• Title/Summary/Keyword: Filarial nematode

Search Result 5, Processing Time 0.024 seconds

Infection by a Filarial Nematode from the Family Onchocercidae in the Wild Bird Anas falcata

  • Kim, Young Ji;Jang, Jin Ho;Kim, Min Chan;Park, Young-Seok;Kim, Hye Kwon
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.4
    • /
    • pp.221-226
    • /
    • 2022
  • A filarial nematode was found in a blood sample of an Anas falcata individual collected in South Korea in 2018. Phylogenetic analysis based on partial cytochrome C oxidase subunit I (COI) sequences placed the nematode as a novel genus of the family Onchocercidae and as closely related to Mansonella species, Chandlerella quiscali, and filarial nematodes recently reported in avian species. However, different phylogenetic relationship was observed in the NADH dehydrogenase subunit 5 and 12S rRNA-based phylogenetic trees, which might indicate the filarial nematode found in this study was not defined to belong to the known specific genera of the family Onchocercidae. The screening of 105 additional avian blood samples retrieved only one 12S rRNA-targeting polymerase chain reaction (PCR)-positive sample, which indicates that filarial nematode infection is rare in wild birds or that it occurs below the detection limit of PCR in blood samples. Nevertheless, considering the recent findings about ancient interactions between birds and human pathogenic filarial nematodes and their pathogenic potential in several avian species, additional exploration of novel filarial nematodes in wild birds remains necessary.

Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: an Update

  • Chai, Jong-Yil;Jung, Bong-Kwang;Hong, Sung-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.189-225
    • /
    • 2021
  • The use of albendazole and mebendazole, i.e., benzimidazole broad-spectrum anthelmintics, in treatment of parasitic infections, as well as cancers, is briefly reviewed. These drugs are known to block the microtubule systems of parasites and mammalian cells leading to inhibition of glucose uptake and transport and finally cell death. Eventually they exhibit ovicidal, larvicidal, and vermicidal effects on parasites, and tumoricidal effects on hosts. Albendazole and mebendazole are most frequently prescribed for treatment of intestinal nematode infections (ascariasis, hookworm infections, trichuriasis, strongyloidiasis, and enterobiasis) and can also be used for intestinal tapeworm infections (taeniases and hymenolepiasis). However, these drugs also exhibit considerable therapeutic effects against tissue nematode/cestode infections (visceral, ocular, neural, and cutaneous larva migrans, anisakiasis, trichinosis, hepatic and intestinal capillariasis, angiostrongyliasis, gnathostomiasis, gongylonemiasis, thelaziasis, dracunculiasis, cerebral and subcutaneous cysticercosis, and echinococcosis). Albendazole is also used for treatment of filarial infections (lymphatic filariasis, onchocerciasis, loiasis, mansonellosis, and dirofilariasis) alone or in combination with other drugs, such as ivermectin or diethylcarbamazine. Albendazole was tried even for treatment of trematode (fascioliasis, clonorchiasis, opisthorchiasis, and intestinal fluke infections) and protozoan infections (giardiasis, vaginal trichomoniasis, cryptosporidiosis, and microsporidiosis). These drugs are generally safe with few side effects; however, when they are used for prolonged time (>14-28 days) or even only 1 time, liver toxicity and other side reactions may occur. In hookworms, Trichuris trichiura, possibly Ascaris lumbricoides, Wuchereria bancrofti, and Giardia sp., there are emerging issues of drug resistance. It is of particular note that albendazole and mebendazole have been repositioned as promising anti-cancer drugs. These drugs have been shown to be active in vitro and in vivo (animals) against liver, lung, ovary, prostate, colorectal, breast, head and neck cancers, and melanoma. Two clinical reports for albendazole and 2 case reports for mebendazole have revealed promising effects of these drugs in human patients having variable types of cancers. However, because of the toxicity of albendazole, for example, neutropenia due to myelosuppression, if high doses are used for a prolonged time, mebendazole is currently more popularly used than albendazole in anti-cancer clinical trials.

Molecular Docking Studies of Wolbachia Endosymbiont of Brugia Malayi's Carbonic Anhydrase Using Coumarin-chromene Derivatives Towards Designing Anti-filarial Agents

  • Malathy, P.;Jagadeesan, G.;Gunasekaran, K.;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.268-274
    • /
    • 2016
  • Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Hence the enzyme carbonic anhydrase from wolbachia endosymbiont of Brugia malayi (wBm) which is responsible for the reversible interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa) is chosen as the drug target for filariasis. This enzyme is thought to play critical functions in bacteria by involving in various steps of their life cycle which are important for survival, The 3D structure of wBm carbonic anhydrase is predicted by selecting a suitable template using the similarity search tool, BLAST. The BLAST results shows a hexapeptide transferase family protein from Anaplasma phagocytophilum (PDB ID: 3IXC) having 77% similarity and 54% identity with wBm carbonic anhydrase. Hence the above enzyme is chosen as the template and the 3D structure of carbonic anhydrase is predicted by the tool Modeller9v7. Since the three dimensional structure of carbonic anhydrase from wolbachia endosymbiont of Brugia malayi has not yet solved, attempts were made to predict this protein. The predicted structure is validated and also molecular docking studies are carried out with the suitable inhibitors that have been solved experimentally.

Development of Real-time PCR Assays for Detection of Dirofilaria immitis from Infected Dog Blood (심장사상충에 감염된 개의 혈액에서 심장사상충 유전자를 검출할 수 있는 실시간 중합효소연쇄반응 기법 개발)

  • Oh, In Young;Kim, Kyung Tae;Jun, Jin Hyun;Shin, Jae-Ho;Sung, Ho Joong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.88-93
    • /
    • 2016
  • Dirofilaria immitis is a filarial nematode parasite that causes cardiopulmonary dirofilariasis in dogs. The purpose of this study was the development of real-time PCR assays for efficient detection of D. immitis. The D. immitis-specific primers confirmed in our previous study and a newly designed TaqMan probe were used for quantitative diagnostics. First, SYBR Green real-time PCR was performed using the specific primers and serially diluted genomic DNA or plasmid DNA, and melting curve analyses were performed after amplification. The melting curve showed one specific peak in each of the genomic and plasmid DNA reactions, suggesting that the primers specifically amplify the D. immitis cytochrome c oxidase subunit I gene. Comparison of SYBR Green and TaqMan real-time PCR using serially diluted plasmid DNA showed higher efficiency and specificity with TaqMan real-time PCR. The real-time PCR assays developed in this study will provide improved diagnostic methods to overcome the limitations of conventional diagnostic tools and facilitate more rapid and accurate diagnoses.

Development of TaqMan Quantitative PCR Assays for Duplex Detection of Dirofilaria immitis COI and Dog GAPDH from Infected Dog Blood (심장사상충에 감염된 개 혈액에서 Dirofilaria immitis의 COI와 개의 GAPDH를 이중 검출하기 위한 정량적 TaqMan PCR 분석법의 개발)

  • Oh, In Young;Kim, Kyung Tae;Gwon, Sun-Yeong;Sung, Ho Joong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Dirofilaria immitis (D. immitis) is a filarial nematode that causes cardiopulmonary dirofilariasis in dogs. In the late stages of infection, infected dogs show one or more symptoms and advanced heart disorder with perivascular inflammation. To detect D. immitis specifically and efficiently in the early stages of infection, a duplex TaqMan qPCR assay was developed based on previous studies using primers and probes specialized to detect D. immitis cytochrome c oxidase subunit I (COI) and dog glyceraldehyde-3-phosphate dehydrogenase (GAPDH). As positive controls, plasmid DNAs were constructed from D. immitis COI or dog GAPDH and a TA-cloning vector. Simplex and duplex TaqMan qPCR assays were performed using the specific primers, probes, and genomic or plasmid DNA. The duplex reaction developed could detect D. immitis COI and dog GAPDH in the same sample simultaneously after optimization of the primer concentrations. The limit of detection was 25 copies for the simplex and duplex assays, and both showed good linearity, high sensitivity, and excellent PCR efficiency. The duplex assays for pathogen detection reduce the costs, labor, and time compared to simplex reactions. Therefore, the duplex TaqMan qPCR assay developed herein will allow efficient D. immitis detection and quantification from a large number of samples simultaneously.