• Title/Summary/Keyword: Filament structure

Search Result 202, Processing Time 0.021 seconds

Molecular Structure of Muscle Filaments Determined by Electron Microscopy

  • Craig, Roger
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.226-232
    • /
    • 2017
  • Electron microscopy and X-ray diffraction have together played a key role in our understanding of the molecular structure and mechanism of contraction of muscle. This review highlights the role of electron microscopy, from early insights into thick and thin filament structure by negative staining, to studies of single myosin molecule structure, and finally to recent high-resolution structures by cryo-electron microscopy. Muscle filaments are designed for movement. Their labile structures thus present challenges to obtaining near-atomic detail, which are also discussed.

Characterization of Luster Properties of Nylon 6 Hollow Filament Yarn Woven Fabric - Three-dimensional Simulation of Hollow Filament -

  • Kim, Jong-Jun;Jeon, Dong-Won;Jeon, Jee-Hae
    • Journal of Fashion Business
    • /
    • v.8 no.6
    • /
    • pp.68-77
    • /
    • 2004
  • Hollow filament yarns provide better warmth to the touch, lighter in weight, increased opacity, and subtle luster compared to the regular synthetic filament yarns. However, luster properties of textile fibers or fabrics are often difficult to characterize, partly due to the fineness of the surface texture, the anisotropic nature of the weave structure, the complexity of the fiber array comprising a yarn, and the fiber structure itself. In this study, the fabric surface luster image was analyzed using image analysis methods after image acquisition. The hollow filament fiber was modeled using a three-dimensional modeling software. It was then ray-traced for comparing the virtual luster images of the hollow fiber and the regular fiber models based on shading models including photon mapping. The luster object size of the actual hollow filament fabric was smaller than that of the regular filament fabric. The shape of the luster object of the hollow filament fabric was dual peak type while that of the regular filament was single.

A Study On the Structure and Mechanical Properties of PP filament at Different Spinning speed and Draw ratio (방사속도 및 연신비 변화에 따른 Polypropylene filament의 구조와 물성에 관한 연구)

  • Lee, Eun-Woo;Cho, Kyu-Min;Cho, In-Sul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Effects of spinning speed and draw ratio on structure and mechanical properties of PP filament. A The crystalline structure and mechanical properties of uniaxially deformed polypropylene filament has been examined by XRD, birefringence, UTM and density method. Uniaxially deformed PP filament was prepared of various spinning speeds (300, 600, 900m/min.) and draw ratio(x2, x3, x4). From the results of these studies, it found the following facts. Firstly, it was found that the crystallinity and crystallite size (110plane) of the samples were increased with increasing of spinning speed and draw ratio, especially, it was rapidly increased between as spun yarn and 2 times draw ratio. Secondly, birefringence value was increased with increasing of spinning speed and draw ratio. The mechanical properties of initial modulus, tensile strength were increased with increasing of spinning speed and draw ratio also, but the degree of elongation decreased as spinning speed and draw ratio.

  • PDF

A Study On the Structure and Mechanical Properties of Polypropylene filament treated with Dry heat treatment at Different draw ratio (연신비를 달리한 Polypropylene filament의 건열처리에 따른 구조와 물성에 관한 연구)

  • Lee, Eun-Woo;Cho, In-Sul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.61-68
    • /
    • 1999
  • The variety of crystalline structure and mechanical properties of PP filament treated with dry heat treatment at different draw ratio has been studied. Crystalline structure and mechanical properties of annealed PP filament at different draw ratio has been examined by XRD, UTM, and density method. Heat treatment has been carried out $100^{\circ}C$, $120^{\circ}C$ $140^{\circ}C$ for 30min. in dry oven. From the results of this study, it found the following facts. It was found that the crystallinity and crystallite size of (110) plane of sample were increased with increasing of annealed temperature and draw ratio. The crystalline form of annealed sample which was undrawn showed ${\alpha}$, ${\beta}$ mixing form below $120^{\circ}C$ and showed ${\alpha}$ form at $140^{\circ}C$. But the crystalline form of annealed sample which was drawn showed ${\alpha}$ form at $120^{\circ}C$. Initial modulus and tensile strength were increased with increasing of annealing temperature, and the degree of orientation was decreased with decreasing of annealing temperature.

  • PDF

The Motion of Plasma in an Excited Quiescent Filament

  • Song, Dong-Uk;Chae, Jong-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.48.2-48.2
    • /
    • 2010
  • Quiescent filaments are bigger, more stable, and longer lived than active region filaments. So, the shape of a quiescent filament changes little during its lifetime and a fast motion of plasma rarely occurs. But when it is dynamically influenced by external phenomena, a rapid motion of plasma may temporarily occur. By analyzing the motion of plasma we can infer some of the magnetic structure permeating such an excited quiescent filament. We analyzed the H$\alpha$ images of a quiescent filament in the northern hemisphere that was observed at Big Bear Solar Observatory on 2004 August 2, and found that: 1) the filament was excited by a flare that occurred in a remote active region located in the southern hemisphere, 2) By this excitation, a part of the filament moved vertically upward and horizontally out of main body, and then it stayed there without much motion. Then after it moved vertically downward and horizontally to the main body, 3) the final position of plasma, however, was not the same as the initial position, being about 14Mm above it. We suggest that the filament was initially in a more or less static equilibrium. The excitation of the filament broke the initial equilibrium, and then brought about a new one that is different from the original one. Since the filament should have magnetic field, it is likely that both the equilibria may have been maintained by diplike magnetic structures. Furthermore, the transition from one equilibrium to another as we inferred should have accompanied a permanent change of magnetic configuration as well.

  • PDF

A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet- like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  • PDF

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi;Han, Xiaoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.273-279
    • /
    • 2017
  • A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

The C-terminal Region of Human Tau Protein with Ability of Filament Formation

  • Chung, Sang-Ho
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.317-321
    • /
    • 1997
  • Tau protein is one of the microtubule-associated proteins in the mammalian brain. In Alzheimer's disease, tau protein is immobilized in the somatodendritic compartment of certain nerve cells, where it forms a part of the paired helical filament (PHF). To understand the role of tau protein in the formation of PHF, a recombinant human tau protein expressed in Escherichia coli and five synthetic peptide fragments (peptide 1 to peptide 5), corresponding to the C-terminal region of tau protein, were prepared and their ability in self-assembly to form filamentous structures was examined. The recombinant human tau protein formed short rod-like structures in 0.1M MES buffer containing 1 mM $MgCI_2$, while a synthetic peptide fragment 1 containing 55 amino acid residues could assemble into a lot of long filamentous structures in water and particularly twisted helical structures in 0.1M MES buffer containing 1 mM $MgCI_2$. This suggests that the C-terminal region possesses a filament-forming ability and may be related to the formation of the helical structure by providing a powerful filament-forming driving force.

  • PDF

Investigation of Environmental characteristics on fibrous biodegradable polymer for slope revegetation (식생기반재로 이용되는 섬유상 생분해소재의 환경성 고찰)

  • Kim, Duk-Sik;Kim, Dong-Sik
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.23-35
    • /
    • 2007
  • Recently, for places with poor vegetating environment, such as slopes made of weathered soil or rocks, erosion tranquilizers, coverings and composite fertilizers have been mixed with seeds and sprinkled onto soil. Also, these plant revegetations have been mixed with nets and used to strengthen cohesion. However, this technique often obstructed plant growth and caused pollution because of not decomposing nets. This study has tested influence on plant revegetation B for slope of weathered soil and rocks and decomposition of naturally decomposing polyester filament yarn. In result, it was showed that plant revegetation B does not harm environment in case of applying it to soil slope and enhance protection capacity of slopes as time goes by. Also, naturally decomposing polyester filament yam was analyzed its physical properties with the passage of time and was known that naturally decomposing polyester filament yarn transformed into a structure easy to decompose by hardening. Thus it is considered that the revegetation method used this study was very effective method for plant establishment and stability of slope.

  • PDF