• Title/Summary/Keyword: Field-degradation

Search Result 827, Processing Time 0.022 seconds

The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics (입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향)

  • 정우환;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

Observation and Characterization of Squeak Noises of Polymeric Materials for Automotive Interior Parts Under Field-Degradation (자동차 내장재용 고분자 재료의 필드 열화에 따른 마찰소음 특성변화)

  • Lee, Changhun;Kang, Byunghyun;Choi, Byoung-Ho;Lee, Jongho;Lee, Kwanghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, the effect of field-degradation of automotive polymeric interior parts on the squeak characteristics was studied for a number of used vehicles with various mileages and years of service. The purpose of this study was to characterize the squeak noise related with long-term degradation in service life. The characteristics of field-degraded polymeric samples are analyzed using Fourier transform infrared(FT-IR) spectroscopy and scanning electron microscopy(SEM). Complicated carbonyl spectra from FT-IR were deconvoluted into various carbonyls to trace field-degradation phenomenon. In addition, various mechanical tests, i.e. tensile test, hardness test as well as coefficient of friction test, were performed to analyze the variation in mechanical properties due to field-degradation. Squeak noise was measured and analyzed by frequency analysis. It was shown that the changes in the chemical structures of polymer due to field-degradation influenced the variation in mechanical properties, and squeak noise may worsen by increasing the squeak noise level in the wide frequency range. The results indicated that customer complaints regarding the squeak noise coming from used vehicles might be one of the important reliability issues because the increase in sound pressure level especially in the high frequency range could annoy drivers and passengers.

Critical Current Degradation Analysis in HTS Pancake Coil due to Self Field Effects

  • Nah, Wan-Soo;Joo, Jin-Ho;Yoo, Jai-Moo
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.68-72
    • /
    • 1999
  • Since the discovery of high Tc superconductors, great efforts have been focused to develop high performance HTS magnets for the ultimate applications to power system devices. Magnet designers, however, have had difficulties in the estimation of the maximum operating current of the designed magnet from the tested short sample data, due to the degradation of the critical current density in the magnet. Similar story applies to the HTS electrical bus bar. It has been found that the critical current of Bi-2223 stacked tapes is much less than the total summation of critical currents of each tape, which is mainly attributed to the self magnetic fields. Furthermore, since the critical current degradation of Bi-2223 tape is greater in the normal magnetic field (to the tape surface) than in the parallel one, detailed magnetic field configurations are required to reduce the self field effects. In this paper, we calculate the self field effects of a stacked conductor, defining self field factors of normal and parallel magnetic fields to the tape surface. Finally, the critical current degradations in the HTS magnet are explained by the introduced self field factors of the stacked conductor.

  • PDF

Electric-Field Induced Degradation of Ionic Solids

  • Chun, Ja-Kyu;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Degradation of performance and life time of a functional material or device thereof is induced, to a great extent, by mass transfer in the material that is driven by various thermodynamic forces imposed intentionally or accidentally during its operation or service. The forces are any gradient of intensive thermodynamic variables, component chemical potentials, electrical potential, temperature, stresses, and the like. This paper reviews electric-field induced degradation phenomena in ionic solid compounds including insulation resistance degradation, crystal shift, microstructural alterations, compositional unmixing, and compound decomposition. Their inner workings are also discussed qualitatively.

Observation of Electrical Properties in Field-aged Photovoltaic Module (Field aged 태양전지모듈의 노화현상에 따른 전기적 특성 관찰)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.28-32
    • /
    • 2004
  • In this paper, degradation in field-aged PV modules including degradation of interconnect, discoloration of encapsulant and hot spot have been observed and analyzed. From the results, photovoltaic module installed for 6 years shows around 16% drop of electrical properties due to the interconnect degradation and PV module passed 18 years has been found to drop of around 20% mainly by the encapsulant discoloration. Furthermore the difference between low and high temperature of PV array at hot spot goes up to $30^{\circ}C$ and it leads to interconnect degradation. On the other hands, the temperature difference was observed to be around $15^{\circ}C$ at the encapsulant discoloration spot of PV array.

  • PDF

Degradation Characteristics of Mobility in Channel of P-MOSFET's by Hot Carriers (핫 캐리어에 의한 피-모스 트랜지스터의 채널에서 이동도의 열화 특성)

  • 이용재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 1998
  • We have studied how the characteristics degradation between effective mobility and field effect mobility of gate channel in p-MOSFET's affects the gate channel length being follow by increased stress time and increased drain-source voltage stress. The experimental results between effective and field-effect mobility were analyzed that the measurement data are identical at the point of minimum slope in threshold voltage, the other part is different, that is, the effective mobility it the faster than the field-effect mobility. Also, It was found that the effective and field-effect mobility. Also, It was found that the effective and field-effect mobility of p-MOSFET's with short channel are increased by decreased channel length, increased stress time and increased drain-source voltage stress.

  • PDF

Influence of Applied Electric Field on Low Temperature Degradation of Y-TZP (인가 전압이 Y-TZP의 저온열화에 미치는 영향)

  • 장주웅;이홍림;김대준;오남식;이득용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1254-1260
    • /
    • 1997
  • Influence of applied electric field on the low temperature degradation of 3 mol% YaO3 stabilized tetragonal zirconia polycrystals(3Y-TZP) was investigated using X-ray diffractometry of specimens aged under the dc field of 1.1 kV/mm in silicone oil both of 12$0^{\circ}C$-21$0^{\circ}C$. After the aging, the tetragonal to monoclinic phase transformation was observed only on the specimen surface of 3Y-TZP faced to the anode. This indicated that the surface was overcrowded with oxygen ions as a result of diffusion of oxygen vacancies toward the cathode-sided surface. To elucidate an influence of the applying time of the electric field on the extent of the degradation of 3Y-TZP in air, specimens were aged fore 0-2 hours under the electric field in the oil bath of 12$0^{\circ}C$ and then subsequently aged for 3h at 22$0^{\circ}C$ in air. The longer the specimens were aged under the field, the more extensive the transformation to the monoclinic phase was on the specimen surface faced to the cathode, probably originated from a high diffusion rate of oxygen ions due to a steep oxygen vacancy concentration gradient.

  • PDF

Comparative Verification of Accelerated Degradation Mechanism of Heat-Resistant Steel for High Temperature Plant with that Used in the Field (고온 플랜트용 내열 합금강 가속열화 기구의 현장 사용재 비교 검증)

  • Lee, Seung-Mi;Kim, Jae-Yeon;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.262-269
    • /
    • 2015
  • Accelerated degradation mechanism of the heat-resistant steel for high temperature plant was analysed in terms of microstructure and hardness. In order to simulate the microstructure of the steel actually used at $540^{\circ}C$ in the field, isothermal exposure was carried out at $630^{\circ}C$ up to 4,800 hours. The artificial degradation mechanism was comparatively verified to successfully simulate degradation of the long-time used field material. For the artificially degraded specimens, databases including size and aspect ratio of carbide, chemical composition (i.e., Cr/Mo ratio) of grain boundary carbide were built up. These degradation parameters were suggested as fingerprints for PHM (i.e., prognostics health management) of power plants.

Design of a Reflector for Infrared Camera (열화상 카메라용 반사경 설계)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • Recently infrared cameras have been widely used to diagnosis degradation status of the power substitution system. At the place of high magnetic field, however, electronic parts of infrared camera take a place problem that is not reasonable working due to high magnetic field. In this paper, technique of design for reflector is proposed to perform degradation diagnosis without damage of infrared camera in a power substation system including the rectifier that is able to impact to the infrared camera by high magnetic field.

Degradation Pattern of Black phosphorus Field Effect Transistor

  • Lee, Byeong-Cheol;Ju, Min-Gyu;Jin, Jun-Eon;Lee, Jae-U;Kim, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.120.1-120.1
    • /
    • 2015
  • We investigate the degradation pattern of Black phosphorus (BP) field effect transistor (FETs) investigated by using an mechanically exfoliated BP that react O2 and water vapor in ambient condition, degradation. The BP FETs was electrically measured every 20 minutes (1cycle) in the air, the total cycle is 100. We show electrical changes with Mobility, On/off ratio, Current and a significant positive shift in the threshold voltage. We extracted the current level at Vgs-Vth = 0, -10, -20 and fitting with Swiss-cheese model. This model suggested that Swiss-cheese model is well fitted with degradation pattern of BP FETs.

  • PDF