• Title/Summary/Keyword: Field weakening

Search Result 155, Processing Time 0.025 seconds

Feasibility Study of Squeal Noise Reduction using Magneto-rheological Elastomer (자기유변탄성체를 이용한 스퀼 소음 저감 타당성 연구)

  • Song, HyukGeun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.274-278
    • /
    • 2020
  • This study investigates the possibility of reducing squeal noise generated at the contact point between an elastomer and glass by using the properties of a magneto-rheological elastomer (MRE) whose stiffness changes with the application of a magnetic field. Previously, squeal noise was mainly observed in the unstable section caused by the weakening of friction due to velocity. Previous studies have shown that squeal noise decreases as the stiffness increases. Accordingly, this study is conducted to control the unstable area of the friction curve and to reduce the noise by inducing the stiffness change of the MRE by applying a magnetic field. The friction, vibration, and noise characteristics are measured using a reciprocating friction tester. The frequency ranges of vibration and noise measured with the accelerometer and sound sensor show similar results. When a magnetic field is applied to the MRE, there is significantly lower noise compared with the case without the application of the magnetic field. The average coefficient of friction decreases with the application of the magnetic field. The maximum coefficient of friction increases rapidly at the turning point and decreases when the magnetic field is applied. This shows that the mechanical properties of the MRE change due to the magnetic field, and the noise and friction coefficient also decrease.

The Study on Field Performance Test of Multi Branch Type Tie(GOLRY TIE) (다지형 침목 현장 성능평가에 관한 연구)

  • Kim, Hae-Gon;Suh, Dong-Seok;Kim, Nam-Hong;Lee, Syeung-Youl
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.162-166
    • /
    • 2011
  • In railway, Tie supports rail and plays a role that distribute train load to the ballast. Also, Tie and ballast resist against external force and fix the track position. But, weakening resistance of ballast and tie cause vertical displacement of tie and track irregularity. For reinforcement of track stiffness and reduction of track irregularity, KORAIL has developed Multi Branch type tie(GLORY Tie) that reinforced resistance than general PCT and installed in order to test in the field. This study measured and analyzed lateral resistance of ballast, wheel load of rail, bending strain of rail foot, vertical displacement and vibration acceleration of tie in order to evaluate performance of Multi Branch type tie in the field. According to the results of test, Multi Branch tie is excellent than general tie about lateral resistance of ballast and vertical displacement of tie. And, gap of measurement value between Multi Branch type tie and general tie about wheel load of rail, bending strain of rail foot were very small.

  • PDF

A Study on Development of Current Map Model Based on Electromagnetic Field Design (전자계 설계 기반 전류맵 모델 개발에 관한 연구)

  • Park, Gui-Yeol;Hwang, Yo-Han;Choi, Jong-Sil;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.454-461
    • /
    • 2021
  • To control the torque of the IPMSM, a lookup table is generally used in control system because of its nonlinear characteristics. However, the method of generating the lookup table data has the disadvantage of having difficulty accurately analyzing the changing parameters, generating the current or magnetic flux map is complicated and long test time taken due to motor temperature differences at each test points. In this paper, on the basis of the electromagnetic field design of IPMSM, we devised an electromagnetic field-based magnetic flux map model that can compensate for the pre-generated magnetic flux map through a quick and simple test.

High Speed Operation of Spindle Motor in the Field Weakening Region (약계자 영역에서의 스핀들 모터 고속운전)

  • Park S. H.;Yoon J. M.;Yu J. S.;Shin S. C.;Won C. Y.;Choi C.;Lee S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.274-278
    • /
    • 2004
  • This paper presents a strategy to drive built in-type spindle induction motor which is used as CNC (Computer Numerical Control) in the industrial world. The direct vector control which is robust to the changed machine parameters in the high speed range is used in this motor control method. And electrical model of induction motor presents the basic idea based on observer structure, which is composed of voltage model and current model. But the former has the defects in low speed range, the latter has the defects of sensitivity to motor parameter. Thus Gopinath model flux estimator which is the closed loop flux observer based on two models for the rotor flut estimation is used in this paper. Moreover this paper presents to drive the spindle motor in the high speed range by using the flux weakening control.

  • PDF

MODELING OF IRON LOSSES IN PERMANENT MAGNET SYNCHRONOUS MOTORS WITH FIELD-WEAKENING CAPABILITY FOR ELECTRIC VEHICLES

  • Chin, Y.K.;Soulard, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • Recent advancements of permanent magnet (PM) materials and solid-state devices have contributed to a substantial performance improvement of permanent magnet machines. Owing to the rare-earth PMs, these motors have higher efficiency, power factor, output power per mass and volume, and better dynamic performance than induction motors without sacrificing reliability. Not surprisingly, they are continuously receiving serious considerations for a variety of automotive and propulsion applications. An electric vehicle (EV) requires a high-effficient propulsion system having a wide operating range and a capability of generating a high peak torque for short durations. The improvement of torque-speed performance for these systems is consequently very important, and researches in various aspects are therefore being actively pursued. A great emphasis has been placed on the efficiency and optimal utilization of PM machines. This requires attention to many aspects related to the machine design and overall performance. In this respect, the prediction of iron losses is particularly indispensable and challenging, especially for drives with a deep field-weakening range. The objective of this paper is to present iron loss estimations of a PM motor over a wide speed range. As aforementioned, in EV applications core losses can be significant during high-speed operation and it is imperative to evaluate these losses accurately and take them into consideration during the motor design stage. In this investigation, the losses are predicted by using an analytical model and a 2D time-stepped finite element method (FEM). The results from different analytical approaches are compared with the FEM computations. The validity of each model is then evaluated by these comparisons.

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain (EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.845-850
    • /
    • 2021
  • In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.

Design and Characteristic Analysis of Wound Rotor Synchronous Motor for ISG according to Field Current Combination (계자전류 조합에 따른 ISG용 권선형 동기전동기의 설계 및 특성분석)

  • Kwon, Sung-Jun;Lee, Dongsu;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1228-1233
    • /
    • 2013
  • In this paper, design of Wound Rotor Synchronous Motor(WRSM) for Integrated Starter and Generator(ISG) is performed based on Finite Element Analysis(FEA). WRSM can control not only magnitude and phase of armature current, but also field current. Thus, various control methods can be considered. Since driving characteristic of WRSM depends greatly on the control method, characteristic analysis accoding to possible driving current combination is reguired. Especially in high speed region, the control method that reduces unnecessary d-axis current by reducing field current is possible, which is similar to field weakening control. By the current combination reducing field and d-axis current, the design minimizing copper loss to increase efficiency on identical driving point is possible. In this paper, high efficient WRSM is designed applying the current combination which can minimize copper loss on each driving point.

Terahertz Spectral Characteristics of Electrolyte Solutions under Different Magnetic Fields

  • Shao, Siyu;Huang, Haiyun;Peng, Bo;Wang, Guoyang;Ye, Ping;Wang, Jiahui;Su, Bo;Cui, Hailin;Zhang, Cunlin
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.337-343
    • /
    • 2022
  • Microfluidic chips are new devices that can manipulate liquids at the micrometer level, and terahertz (THz) time-domain spectroscopy has good applicability in biochemical detection. The combination of these two technologies can shorten the distance between sample and THz wave, reduce THz wave absorption by water, and more effectively analyze the kinetics of biochemical reactions in aqueous solutions. This study investigates the effects of different external magnetic field intensities on the THz transmission characteristics of deionized water, CuSO4, CuCl2, (CH3COO)2Cu, Na2SO4, NaCl, and CH3COONa; the THz spectral intensity of the sample solutions decrease with increasing intensity of the applied magnetic field. Analysis shows that the magnetic field leads to a change in the dipole moment of water molecules in water and electrolyte solutions, which enhances not only the hydrogen-bond networking ability of water but also the hydration around ions in electrolyte solutions, increasing the number of hydrogen bonds. Increasing the intensity of this magnetic field further promotes the hydrogen-bond association between water molecules, weakening the THz transmission intensity of the solution.

Characteristic Comparison with respect to Doubly salient Types (이중돌극기의 종류에 따른 특성 비교)

  • Kim, Youn-Sung;Jin, Chang-Sung;Kim, Seung-Joo;Lee, Ho-Joon;Kim, Koung-Bum;Lee, Ju;Jung, In-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.766_767
    • /
    • 2009
  • Generally, the Doubly Salient Machine such as Switched Reluctance Motor doesn't have Permanent Magnet, it sometimes adopts permanent magnet or DC filed winding for high efficiency or adjustable speed control. In this paper, adjustable speed range is compared for Doubly Salient Permanent Magnet Machine (DSPM), Brushless Doubly Fed Doubly Salient Machine (BDFDS) and Hybrid Excited Doubly Salient Machine (HEDS). Especially, air-gap flux density to the DC field current is shown and the operating speed as the field-weakening is estimated.

  • PDF

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.