• Title/Summary/Keyword: Field simulation

Search Result 5,641, Processing Time 0.033 seconds

Influence of Partial Discharge Properties due to Void in Cable Joint Parts (케이블 접속재 부분방전 특성에 미치는 보이드의 영향)

  • 신종열;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.69-74
    • /
    • 2003
  • To investigate the partial discharge and electric field distribution in cable joint parts, we measured the partial discharge and electric field in specimen. The specimens which cross-linked polyethylene(XLPE) and ethylene propylene diene ethylene(EPDM) are used to insulating material for underground cable md cable jointing parts. The polymers are used to insulating material in switchgear which is a kind of transformer equipment and in ultra-high voltage cable. Its using is increasing gradually, the electrical insulation properties are not only excellent but also mechanical property is excellent. And because it is possible to be made void of several type in insulator while it is produced, which the electrical field distribution is changed by void, it has a critical influence to insulator performance. The underground cable is connecting by the jointing material, insulating breakdown and the electric ageing which are caused by several mixing impurity and the damage of cable insulator layer, which reduced the life of cable while intermediate joint kit is connected. Therefore, the computer simulation is used to estimating insulator performance, XLPE is used to the insulating material of ultra-high voltage cable and EPDM is used to insulator layer in joint material kit, and which are produced as specimen. And it is analyzed the electric field concentrating distribution and partial discharge by modeling of computer simulation in void and cable joint kit.

Simulation Modeling Approach for Integrating Distributed Simulation Objects on the Web (웹상에 분산된 시뮬레이션 객체들의 통합을 위한 시뮬레이션 모델링 방법론)

  • 이영해;심원보;김숙한;김서진
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.25-40
    • /
    • 2000
  • The cost of simulation modeling, the expertise required, and the pains of starting a new each time are impediments to more wide spread adoption of simulation technology. In addition, one of the most critical problems in the field of computer simulation today is the lack of published models and physical objects within the World Wide Web (WWW) allowing such distribution. From the viewpoint of WWW as distributed model repositories, it can be assumed that very many simulation models exist on the web. This paper is based on the premise that WWW is a distributed repository. Design Pattern, web-oriented technology like Java and CORBA, which are especially to cope with distributed objects, are introduced and discussed in detail for integration of simulation model. In this paper an architecture of model integration is proposed, which presents the whole procedure of model integration and how the Internet technologies are connected in. The central focus of this research is on the technical realization of integrating simulation models as distributed objects

  • PDF

DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW (전단유동에서 자성사슬의 거동에 대한 직접수치해석)

  • Kang, T.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF

Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings

  • Gao, Yang;Gu, Ming;Quan, Yong;Feng, Chengdong
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.597-616
    • /
    • 2020
  • The blockage effect on the aerodynamic characteristics of tall buildings is a fundamental issue in wind tunnel test but has rarely been addressed. To evaluate the blockage effects on the aerodynamic forces on a square tall building and flow field peripherally, large eddy simulations (LES) were performed on a 3D square cylinder with an aspect ratio of 6:1 under the uniform smooth inflow and turbulent atmospheric boundary layer (ABL) inflow generated by the narrowband synthesis random flow generator (NSRFG). First, a basic case at a blockage ratio (BR) of 0.8% was conducted to validate the adopted numerical methodology. Subsequently, simulations were systematically performed at 6 different BRs. The simulation results were compared in detail to illustrate the differences induced by the blockage, and the mechanism of the blockage effects under turbulent inflow was emphatically analysed. The results reveal that the pressure coefficients, the aerodynamic forces, and the Strouhal number increase monotonically with BRs. Additionally, the increase of BR leads to more coherence of the turbulent structures and the higher intensity of the vortices in the vicinity of the building. Moreover, the blockage effects on the aerodynamic forces and flow field are more significant under smooth inflow than those under turbulent inflow.

Simulation of KM Plume Density Field by Residual Thrust Using DSMC Method (DSMC 방법을 사용한 KM 잔류추력 밀도장 시뮬레이션)

  • Choi, Young-In;Ok, Ho-Nam;Hong, Il-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.769-771
    • /
    • 2011
  • The satellite payloaded on the 2nd stage of KSLV-I is planned to perform CCAM(Contamination and Collision Avoidance Maneuver) not to collide with KM(Kick Motor). At the moment, the satellite should pass through low density environment not to be contaminated by KM plume due to residual thrust. Therefore, it is necessary to predict the flow field of KM plume by residual thrust. In this paper, DSMC (Direct Simulation Monte-Carlo) method, which is widely accepted to simulate in rarefied regime, is used to compute the density field of KM plume by residual thrust and the result of DSMC simulation was compared with that of FLUENT to validate it.

  • PDF

Numerical characterization of downburst wind field at WindEEE dome

  • Ibrahim, Ibrahim;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Downbursts are acknowledged for being a major loading hazard for horizontally-extending structures like transmission line systems. With these structures being inherently flexible, it is important to characterize the turbulence associated with the wind flow of downburst events being essential to quantify dynamic excitations on structures. Accordingly, the current study numerically characterizes the downburst wind field of open terrain simulated at the Wind Engineering, Energy and Environment (WindEEE) dome testing facility at The University of Western Ontario in Canada through a high-resolution large eddy simulation (LES). The study validates the numerical simulation considering both the mean and the turbulent components of the flow. It then provides a detailed visual description of the flow at WindEEE through the capabilities enabled by LES to identify the key factors affecting the flow. The study also presents the spatial distribution of turbulence intensities and length scales computed from the numerical model and compares them with previous values reported in the literature. The comparison shows the ability of the downburst simulated at WindEEE to reproduce turbulence characteristics similar to those reported from field measurements. The study also indicates that downburst turbulence is well-correlated circumferentially which imposes high correlated loads on horizontally-distributed structures such as transmission lines.

Field Measurements and CFD Simulations of Indoor Thermal Environments in the Assembly Hall (대형 강의실의 실내 열환경 실측 및 컴퓨터시뮬레이션 비교 연구)

  • Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • The evaluation of the indoor environment of the Assembly Hall in the University, which is designed to be a large space, requires efficient design of its heating system that takes into consideration natural convection and the characteristics of the occupant's spaces. Indoor thermal environment was measured in the field and simulated with CFD code. The estimations of temperature distribution and indoor airflow distribution must be carried out simultaneously, as the thermal stratification is induced by natural convection flows. In order to simulate the even distribution of factors affecting the indoor environment, including temperature and airflow, Phoenics is used. The turbulent flow model adopted is the RNG k- model. The inlets and outlets of the air-conditioning systems, material and thermal properties, and the size of the test room ($35m{\times}18m{\times}10m$) are used for the simulation. Since the Assembly Hall is symmetric, half of the space is simulated. A Cartesian grid is used for calculation and the number of grids are respectively $60{\times}45{\times}35$. The results of the computer simulation during winter conditions are compared with the measurements at the typical points in the assembly hall with the heating system. After evaluating the results of the computer simulations, the methods of the heating system and layout are suggested.

Development of the Temporal Simulation Model for Microorganism Concentrations in Paddy Field (논 담수 내 미생물 농도의 시간적 모의를 위한 모델 개발)

  • Hwang, Sye-Woon;Jang, Tea-Il;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.673-678
    • /
    • 2005
  • The objective of this paper is to develop the microorganism concentration simulation model for the health related effect analysis while farmers and water managers reuse the wastewater for agricultural irrigation. This model consists of the CE-QUAL-R1 model and the CREAMS-PADDY model. The CE-QUAL-R1 model is the 1-D numerical model to analyze the water quality of the reservoir and the CREAMS-PADDY model is modified from CREAMS model for considering the hydrologic cycles in paddy field. This model was applied to examine the application by the observed data from 2003 in Byoungjum study area. From this research, the average root mean square error (RMSE) for the simulated concentration during the calibration period was 0.51 MPN/100ml and correlation coefficient $(R^2)$ was 0.71. And the RMSE for the simulated concentration during the verification period was 0.46 MPN/100ml and $R^2$ was 0.73. This simulation results show that the coliform inflow concentrations by the wastewater irrigation wield great influence upon the temporal coliform concentrations in paddy field.

  • PDF

Study on the Radar Detection Probability Change Considering Environmental Attenuation Factor (환경감쇠인자를 고려한 레이더 탐지 확률 변화에 관한 연구)

  • Kim, Young-Woong;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.23-28
    • /
    • 2015
  • The detection field is an important sector of the factors influencing the battle field. Basically, The radar emits a radio wave to perform the detection in the existing way. However, When most existing radars identify target by signal processing to return radio wave, Environmental attenuation factor does not reflected. The radar using this radio wave has got the possibility changing detect result depending on attenuation factor by environmental conditions, The operational problems may arise in a real battle field. Therefore, In this paper, When emitted radio waves were come back, Reflecting the environmental attenuation factor, Experimental attempts to identify the target to enable more accurately.

Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator (굴삭기 IMV용 비례전자밸브의 동특성)

  • Kang, Chang Nam;Yun, So Nam;Jeong, Hwang Hoon;Kim, Moon Gon
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.