• Title/Summary/Keyword: Field effects

Search Result 7,625, Processing Time 0.036 seconds

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM (유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Seo, Yeung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF

Temperature Dependence of Conductivities of Recyclable Polyethylene and Polypropylene and its Effects on Electric Field Distribution in Power Cable (재활용 가능한 폴리에틸렌과 폴리프로필렌의 전도도 온도의존성과 전력케이블 내의 전계분포에 미치는 영향)

  • Lee, June-Ho;Kong, Tae-Sik;Kim, Seong-Jung;Kwon, Ki-Hyung;Cho, Kyu-Cheol;Hozumi, Naohiro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1881-1887
    • /
    • 2011
  • In this work the recyclable new polyethylene(PE) and polypropylene(PP), which are thermoplastic, have been investigated as the eco-friendly insulating candidates to replace the cross-linked polyethylene (XLPE). The temperature dependence of conductivities of these materials has been measured and its effects on electric field and space charge distribution in polymeric insulated power cable under temperature gradient have been calculated. It is shown that the sensitivity of conductivity to temperature change has more critical influence to determine the electric field distribution in the power cable than the absolute value of conductivity does and it can be said that the temperature dependence is one of most important factors for the power cable design.

The Analysis of the Temperature Effects on Long-span Strut by Field Monitoring and Numerical Analysis (현장계측 및 수치해석에 의한 장대버팀보의 온도영향 분석)

  • Lee, Moon-Joo;Choi, Sung-Kun;Shin, Se-Young;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1468-1475
    • /
    • 2005
  • In this study, the effects of temperature on loading of long-span strut were studied by using field monitoring and numerical analysis. For the field monitoring, several sensors, such as stain gages, temperature gages and load cells, were installed on the struts. From the monitoring results, the relation between temperature and axial force of the struts was analysed. By numerical analysis, the changes of axial force of strut and lateral displacement of wall due to temperature change were described with the strut length and ground conditions.

  • PDF

Analysis of Safety Distance and Maximum Permissible Power of Resonant Wireless Power Transfer Systems with Regard to Magnetic Field Exposure

  • Park, Young-Min;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.450-459
    • /
    • 2015
  • In this paper, the safety distances and maximum permissible power (MPP) of resonant wireless power transfer systems are defined and derived with regard to human exposure to electromagnetic field (EMF). The definition is based on the calculated induced current density and electric field in the standard human model located between the transmitting and receiving coil. In order to avoid the adverse health effects such as stimulation of nerve tissues, the induced current and electric field must not exceed the basic restriction values specified in EMF safety guidelines. The different combinations of diameters of the coils and the distance between the two coils are investigated and their effects are analyzed. Two versions of EMF safety guidelines (ICNIRP 1998 and ICNIRP 2010) are used as bases for safety distance calculation and the difference between the two guidelines are discussed.

CNTs Electric Field Enhancement of CIGS Solar Cells

  • Han, Seong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.67-67
    • /
    • 2011
  • Compound semiconductor/CNTs composites have shown considerably improved efficiency improvement in photovoltaic devices, which is often attributed to two different factors. One is the formation of efficient electronic energy cascade structures. The other effect of CNTs on the performance of photovoltaic devices is the decrement of interfacial resistance. The interfacial resistances at n-type/ p-type materials and/or n-type materials/TCO electrode are reduced by an outstanding electrical property of CNTs. In addition to the effects of CNTs, we report the third reason for increment of efficiency in photovoltaic devices by CNT's well-known electrical field enhancement effects. The improved ${\beta}$ values in reverse-FE currents of CIGS electrode with SWNTs layers indicate the enhancement of electrical field in photovoltaic devices, which implies the acceleration of the electron transfer rate in the cell. Due to the formation of an efficient electronic energy cascade structure and the decrease of the interfacial resistance as well as the improvement of the electrical field in the photovoltaic devices, the power conversion efficiency of electrochemically deposited superstrate-type CIGS solar cells was increased 24.3% in the presence of SWNTs and showed 10.40% conversion efficiency.

  • PDF

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

Effects of Selective Growth on Electron-emission Properties of Conical-type Carbon Nanotube Field-emitters (원추형 기판 위에 탄소 나노튜브의 선택적 성장이 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Noh, Young-Rok;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • In this study, for use of carbon nanotubes (CNTs) as a cold cathode of x-ray tubes, we examine the effects of selective growth of CNTs on their field emission properties and long-term stability. The selective growth of CNTs was performed by selectively etching the catalyst layer which was used for CNTs' nucleation. CNTs were grown on conical-type tungsten substrates using an inductively-coupled plasma chemical vapor deposition system. For all the grown CNTs, their morphologies and microstructures were analyzed by field-emission scanning electron microscope and Raman spectroscopy. The electron-emission properties of CNTs and the long-term stability of emission currents were measured and characterized according to the CNTs' growth position on the substrate.

The Effects of Electric Field Variation by The Third Electrode on Water Electrophysicochemical Characteristics (제3전극에 의한 전계변화가 수중 전기물리화학적 특성에 미치는 영향)

  • Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.136-141
    • /
    • 2010
  • In this paper, after the third electrode type oxidant generator which could format non-uniform electric field in water had been manufactured and installed, by direct electrolysis, the effects of the hydrogen potential and oxidation reduction potential characteristics attendant upon electric field change on a higher concentration oxidant generation characteristics were investigated. Consequently, as the third electrode was installed in the middle of two slit electrodes and the polarity of applied power was changed, it was observed that the third electrode system with the positive electrode can generate a higher concentration oxidant, hydrogen potential and oxidation reduction potential as compared with that of the negative electrode. It is because the positive electrode was bombarded mostly energetic electrons and the negative electrode was bombarded mainly by less energetic positive ions.

The Birefringence of the chalcogenide As-Ge-Se-S thin films by the electric field effects (전계효과에 의한 비정질 칼코게나이드 박막에서의 복굴절 특성)

  • Son, Chul-Ho;Jang, Sun-Joo;Yeo, Cheoi-Ho;Park, Jung-I1;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1727-1729
    • /
    • 2000
  • We has investigated the birefringence by the assisted electric field effect on $As_{40}Ge_{10}Se_{15}S_{35}$ thin films. Photoinduced birefringence has been studied in a chalcogenide material. We induced this thin films using linearly polarized He-Ne laser light(633nm) and detected polarized semiconductor laser light(780nm). To investigate the effect of electric field, various bias voltages applied. The result is shown that the birefringence has a higher value in +2V than others. We obtained the birefringence in the electric field effects by various voltages.

  • PDF