• 제목/요약/키워드: Field Performance

검색결과 9,385건 처리시간 0.039초

몰리브덴 팁 전계 방출 표시 소자의 프릿 실링에 있어서 분위기 기체가 전계 방출 성능에 미치는 영향 (Influence of Ambient Gases on Field Emission Performance in the Frit-sealing Process of Mo-tip Field Emission Display)

  • 주병권;김훈;정재훈;김봉철;정성재;이남양;이윤희;오명환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권7호
    • /
    • pp.525-529
    • /
    • 1999
  • The influence of ambient gases on field emission performance of Mo-field emitter array(FEA) in the frit-sealing step of field emission display(FED) packaging process was investigated. Mo-tip FEA was mounted on the glass substrate having a surrounded frit(Ferro FX11-137) and fired at $415^{\circ}C$ in the ambient gases of air, $N_2$ and Ar. The Ar gas was proved to be most proper ambient among the used gases through evaluating the turn-on voltage and field emission current of the fired Mo-tip FEA devices. It was confirmed that the Mo surface fired in Ar ambient was less oxidized when compared with another ones annealed in air and Ar ambient by the AFM, XPS, AES and SIMS analysis. Finally, the 3.5 inch-sized Mo-tip FED, which was packaged using frit-sealing process in the Ar ambient, was proposed.

  • PDF

기지국 배열안테나의 근역장 프로빙 방법의 개발 (The Development of Near-field Probing Method on the Base Station Array Antenna)

  • 임계재
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권1호
    • /
    • pp.65-72
    • /
    • 2009
  • 기지국 배열안테나의 근역장 프로빙을 통해 원역장 성능을 평가하기 위해 반사판을 갖는 다이폴 배열 안테나와 프로브 사이 높이에 따른 상호 간의 영향을 분석하였다. 기본 개념은 기지국 배열 안테나의 입력단들과 프로브의 입력 port P 에 대한 근역장에서의 상호 높이를 변화시키며 S 파라미터 측정값을 분석하여 상호결합 효과가 가장 적으면서 프로빙 효율이 높은 위치를 결정하는 것이다. 그리고 여기서 얻어진 높이는 기지국 배열안테나의 정밀한 원역장 성능을 구하기 위한 근역장 프로빙 시스템 설계에 적용 가능할 것이다.

  • PDF

Field Emission Properties of Carbon Nanotubes on Graphite Tip

  • Shin, Ji-Hong;Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Lee, Cheol-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.383-383
    • /
    • 2011
  • Generally, field emitters can be categorized into two types according to the emitter shape, one is a planar field emitter and the other is a point emitter. The planar field emitter is used for displays, flat lamps and signage boards. On the other hands, the point field emitter is expected to play a significant role in x-ray sources and electron beam sources. Such applications of the point field emitters, especially, need large emission current and high emission stability with a small electron beam size. A few reports announced point emitters made by carbon nanotubes (CNTs). However, they still have suffered from poor reproducibility and low emission current. Here, we demonstrated high performance CNT point emitters by attaching CNTs onto graphite rod. Graphite rod exhibited good electrical conductivity and chemical stability. In this method, the shape of the point emitter could be easily controlled by changing the length and diameter of the graphite rod. The CNT point emitter showed emission current over 1 mA at an applied electric field of 1.4 V/${\mu}m$. We consider that the stable emission performance is attributed to the stable contact between CNTs and graphite rod.

  • PDF

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

Comparisons of internal self-field magnetic flux densities between recent Nb3Sn fusion magnet CICC cable designs

  • Kwon, S.P.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.10-20
    • /
    • 2016
  • The Cable-In-Conduit-Conductor (CICC) for the ITER tokamak Central Solenoid (CS) has undergone design change since the first prototype conductor sample was tested in 2010. After tests showed that the performance of initial conductor samples degraded rapidly without stabilization, an alternate design with shorter sub-cable twist pitches was tested and discovered to satisfy performance requirements, namely that the minimum current sharing temperature ($T_{cs}$) remained above a given limit under DC bias. With consistent successful performance of ITER CS conductor CICC samples using the alternate design, an attempt is made here to revisit the internal electromagnetic properties of the CICC cable design to identify any correlation with conductor performance. Results of this study suggest that there may be a simple link between the $Nb_3Sn$ CICC internal self-field and its $T_{cs}$ performance. The study also suggests that an optimization process should exist that can further improve the performance of $Nb_3Sn$ based CICC.

Anisotropic Magnetoresistive 센서를 이용한 차량 검지기의 성능분석 (Performance Analysis of an Anisotropic Magnetoresistive Sensor-Based Vehicle Detector)

  • 강문호
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.598-604
    • /
    • 2009
  • This paper proposes a vehicle detector with an anisotropic magnetoresistive (AMR) sensor and addresses experimental results to show the detector's performance. The detector consists of an AMR sensor and mechanical and electronic apparatuses. The AMR sensor, composed of four magnetoresistors, senses disturbance of the earth's magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. This paper verifies performance of the detector on the basis of experimental results obtained from the field tests carried under the two traffic conditions on local highways in Korea. First, I show the vehicle counting performance on a low speed congested highway by comparing the vehicle counts measured by the detector with the exact counts. Second, both vehicle counts and average speeds calculated from the measured point-occupancy on another continuously free running highway are compared with the reference values obtained from a loop detector which has two independent loop coils, where I have used several performance indices including mean absolute percentage error (MAPE) to show the performance consistency between the two types of detectors.

동력차용 브레이크슈의 제동성능에 관한 실험적 연구 (Experimental study on the braking performance of a brake shoe for power car)

  • 권석진;구병춘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.87-92
    • /
    • 2000
  • In this paper, we investigated the braking performance of a composite brake shoe for power car. Laboratory bench test and field tests were carried out to characterize the braking performance by the parameters such as friction coefficient, wear rate, braking temperature and stopping distance. Density distribution was found to have a significant influence on the wear rate. The composite brake shoe with even density distribution showed better braking performance. The braking performance of a composite brake shoe was also compared with that of a cast iron brake shoe which is currently being used. The result indicated the performance of the composite brake shoe is better than the cast iron brake shoe.

  • PDF

PV 일체형 태양광발전 광선반시스템의 성능평가 (The Performance Evaluation of Photovoltaic-integrated Lightshelf Systems)

  • 박훈;정유근;김정태
    • KIEAE Journal
    • /
    • 제12권6호
    • /
    • pp.129-134
    • /
    • 2012
  • The lightshelf system, a daylighting device, has been applied to improve the visual environment by optimal light distributions and intense illumination levels of a interior. Also, The photovoltaic is one of the most important sustainable technologies appliable to architectures. This study aims to evaluate the performance of photovoltaic integrated lightshelf system. For the study, the 1/5 scaled office models were made and the field tests were experimented under clear sky conditions. The power ratio has been analyzed to evaluate the performance of photovoltaic integrated lightshelf system. As results, the power performance was high on photovoltaic lightshelf installation angle $0^{\circ}$. And the performance was reduced on 23(%) by installation angle $15^{\circ}$ and 63(%) by installation angle $30^{\circ}$.

Application of High Performance Coatings for Service Life Extension of Steel Bridge Coatings

  • Lee, Chan-Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.169-174
    • /
    • 2021
  • In this study, performance tests, a field evaluation, and a life cycle cost (LCC) analysis for high performance coating systems were conducted to prepare a plan to reduce the cost of maintenance coating and contribute to the service life extension of steel bridges by applying high performance coatings to steel bridges that will be constructed in the future. From the deterioration models based on the field evaluation for chlorinated rubber and urethane topcoat systems, which have been applied often, the mean service lives were derived as 20.8 and 26.6 years, respectively. For the other coating systems that have not been applied in practice, the coordination factors were differentially applied with evaluation items. The most durable coating system was predicted to be thermal spray coating (TSC) primer/epoxy intermediate coat/fluoride resin topcoat, with a predicted value as long as 42.2 years. The LCC analysis indicates that partial application of high performance coating, such as TSC and fluoride resin, to specific parts vulnerable to corrosion and ultraviolet ray (UV) is more advantageous than the use of general coating systems.

3kW급 계통연계형 태양광발전시스템의 성능특성 비교분석에 관한 연구 (A Study on Performance Analysis of 3kW Grid-Connected PV Systems)

  • 소정훈;최주엽;유권종;정영석;최재호
    • 한국태양에너지학회 논문집
    • /
    • 제24권2호
    • /
    • pp.9-15
    • /
    • 2004
  • 3kW grid connected PV(photovoltaic) systems have been constructed for evaluating and analyzing performance of PV system at FDTC(field demonstration test center) in Korea, PV systems installed in FDTC have been operating and monitored since November 2002. As climatic and irradiation conditions have been varied through long-term field test, data acquisition system has been constructed for measuring performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV systems has been evaluated and analyzed for component perspective(PV array and power conditioning system) and global perspective(system efficiency, capacity factor, and electrical power energy) by field test. By the results, it is very important to develop optimal design technology of grid connected PV system.