• Title/Summary/Keyword: Field Emission

Search Result 2,722, Processing Time 0.034 seconds

Planar Laser-Induced Fluorescence (PLIF) Measurements of a Pulsed Electrothermal Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.;Byungyou Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1808-1815
    • /
    • 2001
  • The characteristics of a pulsed plasma jet originating from an electrothermal capillary discharge have been investigate using laser-induced fluorescence (LIF) measurement. Previous emission measurements of a 3.1 kJ plasma jet show trial upstream of the Mach disk the temperature and electron number density are about 14,000 K and and 10$\^$17/ cm$\^$-3/, while downstream of the Mach dick tole values are about 25,000 K and 10$\^$18/ cm$\^$-3/, respectively. However, these values are barred on line-of-sight integrated measurements that may be misleading. Hence, LIF is being used to provide both spatially and temporally resolved measurements. Our recent work has been directed at using planar laser-induced fluorescence (PLIF) imaging of atomic copper in the plasma jet flow field. Copper is a good candidate for PLIF studies because it is present throughout the plasma and has electronic transitions that provide an excellent pump-detect strategy. Our PLIF results to date show that emission measurements may give a misleading picture of the flow field, as there appeals to be a large amount of relatively low temperature copper outside the barrel shock. which may lead to errors in temperature inferred from emission spectroscopy. In this paper, the copper LIF image is presented and at the moment, relative density of atomic copper, which is distributed in the upstream of the pulsed plasma jet, is discussed qualitatively.

  • PDF

Acoustic emission source location and noise cancellation for crack detection in rail head

  • Kuanga, K.S.C.;Li, D.;Koh, C.G.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1063-1085
    • /
    • 2016
  • Taking advantage of the high sensitivity and long-distance detection capability of acoustic emission (AE) technique, this paper focuses on the crack detection in rail head, which is one of the most vulnerable parts of rail track. The AE source location and noise cancellation were studied on the basis of practical rail profile, material and operational noise. In order to simulate the actual AE events of rail head cracks, field tests were carried out to acquire the AE waves induced by pencil lead break (PLB) and operational noise of the railway system. Wavelet transform (WT) was first utilized to investigate the time-frequency characteristics and dispersion phenomena of AE waves. Here, the optimal mother wavelet was selected by minimizing the Shannon entropy of wavelet coefficients. Regarding the obvious dispersion of AE waves propagating along the rail head and the high operational noise, the wavelet transform-based modal analysis location (WTMAL) method was then proposed to locate the AE sources (i.e. simulated cracks) respectively for the PLB-induced AE signals with and without operational noise. For those AE signals inundated with operational noise, the Hilbert transform (HT)-based noise cancellation method was employed to improve the signal-to-noise ratio (SNR). Finally, the experimental results demonstrated that the proposed crack detection strategy could locate PLB-simulated AE sources effectively in the rail head even at high operational noise level, highlighting its potential for field application.

Remote monitoring technique for geotechnical structures using acoustic emission (미소파괴음을 이용한 지반구조물 원격계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Eui-Seob;Park, Chan;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.946-956
    • /
    • 2008
  • Acoustic emission(AE) is low-energy seismic event associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. Rock slopes are usually large in scale and there are many discontinuities in rock mass. AE waves are strongly attenuated when they propagate through joints. Thus we should resolve the attenuation problem to monitor large volume. In this study, we developed waveguide which is composed of two different materials, cement mortar and stainless steel rod. And several laboratory tests on developed waveguide are performed to obtain generalized AE parameters to predict the failure stage in rock slope. Comparing field data with experimental data in laboratory tests, failure stage of rock slope can be evaluated. To verify and optimize the developed monitoring method, we are now carrying out the field application at a rock slope.

  • PDF

EL Devices for LCD Backlight Based on ZnS:Cu Phosphor (혼합파우더 및 절연박막층을 이용한 PELD의 광학특성)

  • 박수길;조성렬;전세호;엄재석;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.391-394
    • /
    • 1998
  • Electroluminescence is the light emission obtained by an electrical excitation energy passing through a phosphor under an applied high electrical field. EL are paid much attention on flat panel display as a backlight and indicator, which are divided into ACPRL(alternating-current powder electroluminescent) and ACTFEL(alternating-current powder electroluminescent). In this paper, Electric and emission properties on ACPEL are investigated based on ZnS:Cu phosphor. The basic structure on this is ITO glass/phosphor/insulator/ backelectrode, CR-M which has high efficiency on thermal properties and dielectric Properties was introduced and BaTiO$_3$ as a insulating layer in order to increase app1ied electric field on phosphor. Changing on Dielectric and emission Properties was caused by a different viscosity of binder which filled on space between phosphor particle. 60cd/$m^2$ under 60V, 2kHz sinusoidal was gotten from ACPELD prepared in this work.

  • PDF

A Field Measurement Study on Heat Storage/Emission Characteristics of Tower Type Apartment Structures in Winter Season (겨울철 난방시 탑상형 아파트 구조체의 축·방열 특성에 대한 현장측정 연구)

  • Chang, Hyun-Jae;Cho, Keun-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.190-195
    • /
    • 2012
  • In this study, as a complementary study of the former study on indoor thermal environment in a tower type apartment house at tropical nights, a field measurement was conducted in winter season. Mainly, characteristics of heat storage and heat emission in apartment structures, in this study, were investigated. As results, indoor air temperature was changed in the range of $22.5^{\circ}C{\pm}1.0^{\circ}C$, and followed not the change of outdoor air temperature but the changed pattern of floor surface temperature. Wall surface temperature was unresponsive to the change of floor surface temperature compared with the change of indoor air temperature because wall structure was composed of concrete which has large heat capacity, and was changed in the range of $22.3^{\circ}C{\pm}0.6^{\circ}C$. Heat was stored continuously into the structures of wall and ceiling through the measurement term. and this means that a large heat capacity of the apartment structure acts as a disadvantage in winter season, too. As a total review of the study with the former study, a large heat capacity of the apartment structure acts against indoor thermal comfort in winter season as well as in summer season.

Effects of catalyst pretreatment on structural and field emissive properties of carbon nanotubes synthesized by ICP-CVD method (ICP-CVD 방법으로 합성된 탄소 나노튜브의 구조적 물성 및 전계방출 특성에 촉매의 전처리 공정이 미치는 영향)

  • Hong, Seong-Tae;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1862-1864
    • /
    • 2005
  • Carbon nanotubes [CNTs] are grown on TiN-coated Si substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Pre-treatment of Ni catalysts has been performed using an RF magnetron sputtering system. Structural properties and field-emission characteristics of the CNTs grown are analyzed in terms of the RF power applied and the treatment time used in the pre-treatment process. The characterization using various techniques, such as FE-SEM, AFM, and Raman spectroscopy, show that the physical dimension as well as the crystal quality of CNTs are changed by pre-treatment of Ni catalysts. It is also seen that Ni catalysts with proper grain size and uniform surface roughness may produce much better electron emission. The physical reason for all the measured data obtained are discussed to establish the relationship between the structural property and the electron emission characteristic of CNTs.

  • PDF

Fabrication of Carbon Nanotube Field Emitters

  • Yoon, Hyeun-Joong;Jeong, Dae-Jung;Jun, Do-Han;Yang, Sang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.121-124
    • /
    • 2008
  • This paper presents the fabrication and field emission of carbon nanotube field emitters for a micro mass spectrometer. The carbon nanotube is an adequate material as a field emitter since it has good characteristics. We have successfully fabricated a diode field emitter and a triode field emitter. Each field emitter has been constructed using several micromachining processes and a thermal CVD process. In the case of the diode field emitter, to increase the electric field, the carbon nanotubes are selectively grown on the patterned nickel catalyst layer. The electron current of the diode field emitter is 73.2 ${\mu}A$ when the anode voltage is 1100V. That of the triode field emitter is 3.4 pA when the anode voltage is 1000V.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

Electron emission stability from CNTs with various densities (탄소나노튜브 밀도의 변화에 따른 전자방출 안정성 연구)

  • Lim Sung Hoon;Yun Hyun Sik;Ryu Je Hwang;Moon Jong Hyun;Park Kyu Chang;Jang Jin;Moon Byeong Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.258-262
    • /
    • 2005
  • We report on the field emission properties from vertically aligned carbon nanotubes (CNTs) produced by a triode PECVD with a SiNx capping layer on metal catalyst. It is found that the CNTs density can be controlled by the capping layer thickness and decreases with increasing SiNx thickness. The CNT density of $\~$ 104/$cm^{2}$ exhibited highest electron emission characteristics, the threshold field of 1.2 V/$\mu$m and the current density of 0.17 mA/$cm^{2}$ at 3.6 V/$\mu$m. We have carried out investigation of electron emission stability under ambient gas of N2. The electron emission stability was improved with decreasing CNT density. Under $1\times$$10^{-5}$ Torr ambient pressure, the CNTs in 5 $\mu$m hole show electron emission current higher than $1\times$$10^{-4}$ A/cm2 and it's electron emission uniformity has $2\%$.

Ammonia Gas Emission Factor at different Application Rate of Urea in Chinese Cabbage Cultivation (배추 재배지에서 요소시비에 따른 암모니아 배출계수 산정)

  • Lee, Su-Lim;Lee, Jae-Hoon;Rho, Jun-Suk;Park, Yu-Jin;Choi, Ah-Young;Kim, Sin-Sil;Lee, Seul-Rin;Park, Jong-Hwan;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • BACKGROUND: The main source of ammonia in soils, South Korea is agricultural emissions (e.g., fertilizer application and livestock manure), with the recent emission inventories reporting them to be approximately 80% of the total emissions. Ammonia as a pollutant is originated largely from agricultural activity and is an important contributor to air quality issues in South Korea. The importance of ammonia in agricultural land is also emerging. In this study, the characteristics of ammonia emission from Chinese cabbage cultivation fields with application rates of urea sere were evaluated. METHODS AND RESULTS: The ammonia emission characteristics were investigated at the different urea application rates (0, 160, 320, and 640 kg ha-1) and the ammonia emission factor in the Chinese cabbage cultivation field was calculated. As application rate of urea application increased, ammonia emissions increased proportionally. In 2020 and 2021, cumulative ammonia emissions with urea 320 kg ha-1 treatment were 39.3 and 35.2 kg ha-1, respectively for 2020 and 2021. When urea fertilizer was applied, the ammonia emission factors were 0.1217 and 0.1358 NH4+-N kg N kg-1 in 2020 and 2021, respectively. CONCLUSION(S): Ammonia emissions increased as application rate of urea increased, and the average ammonia emission factor of the Chinese cabbage cultivation field for two years was 0.129 NH4+-N kg N kg-1.