• Title/Summary/Keyword: Field Applicability

Search Result 1,465, Processing Time 0.024 seconds

Development of a Portable-Based Smart Structural Response Monitoring System and Evaluation of Field Applicability (포터블 기반 스마트 구조 응답 모니터링 시스템 개발 및 현장 적용성 평가)

  • Sangki Park;Dong-Woo Seo;Ki-Tae Park;Hojin Kim;Thanh Bui-Tien;Lan Nguyen-Ngoc
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.147-156
    • /
    • 2023
  • Because the behavior of cable bridges is dominated by dynamic response and is relatively complex, short- and long-term field monitoring are often required to evaluate the bridge condition. If a permanent SHMS (Structural Health Monitoring System) is not installed, a portable monitoring system is needed for the checking of bridge condition. In this case, it can be difficult to operate the portable monitoring system due to limited conditions such as power and communication according to the location and type of the bridge. In this study, the portable-based smart structural response monitoring system is developed that can be effectively used for short- and long-term monitoring of cable bridges in Korea and Southeast Asia. The developed system is a multi-channel portable data acquisition and analyzer that can be operated for a long time in the field using its own power supply system, and is included with the automated analysis algorithm for the dynamic characteristics of cable bridges using real-time data. In order to evaluate the field applicability of the developed system, field demonstration was conducted on cable bridges in Korea and Vietnam. Through the demonstration, the reliability and efficiency of field operation of the developed system were confirmed, and additionally, the possibility of application to overseas markets was confirmed in cable bridge monitoring field.

A Study on the Applicability of Prediction Methods for Long-term Ground Settlement in Soft Ground of Gyeongnam Area (경남지역 연약지반의 장기침하량 예측방법에 대한 적용성 연구)

  • Park, Eunhyung;An, Ducklae;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, the degrees of consolidation were evaluated by analyzing the long-term settlement measured at the 3 work sites with soft ground in Gyeongnam Area. The Hyperbolic, Hoshino and Asaoka method were used, which were focused on prediction of long-term settlement of land on the basis of field measurement data. And the applicability of the settlement prediction method according to the measurement periods was investigated by analyzing the degree of consolidation at the target areas after dividing the terms into early and latter parts. According to the results obtained at the early stage of consolidation, the Hyperbolic method appeared to be in the highest applicability level, which was followed by Asaoka and Hoshino method in the order of level. In the case of latter stage of consolidation, Asaoka method appeared to be in the highest applicability level, which was followed by and the Hyperbolic, Hoshino method in the order of level.

Evaluation of Applicability of CMD-SOIL using the Deep Mixing Method in Ulsan Area for the Construction of Coastal Structure Foundation (해안구조물 기초의 건설을 위해 울산지역에서의 심층혼합공법을 사용한 CMD-SOIL의 적용성 평가)

  • Jae-Hyun Park;Kwang-Wu Lee;Kyong-Ju Mun;Dae-Sung Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.61-69
    • /
    • 2023
  • As global trade and maritime port environments change, the need to respond to larger and faster ships is increasing. Accordingly, new ports are being built around metropolitan cities such as Busan and Ulsan. In general, a compaction method using sand or gravel is applied to the construction of a new port. However, due to the lack of sand or gravel and the difficulty in securing economic feasibility due to the increase in unit price, the deep mixing method has recently been used. Therefore, in this study, CMD-SOIL using circulating resources was applied to the Ulsan area, and the applicability was determined by analyzing the laboratory mixing test and boring results at in-situ. As a result of the test, it was analyzed that it showed more than the design mixing strength, and it was possible to secure the similar performance as blast furnace slag cement. In addition, it was analyzed that the design standard strength can be sufficiently secured as a result of in-situ boring. Therefore, considering the field applicability in the Ulsan, it is judged that the use of CMD-SOIL is possible.

Development of radar-based quantitative precipitation forecasting using spatial-scale decomposition method for urban flood management (도시홍수예보를 위한 공간규모분할기법을 이용한 레이더 강우예측 기법 개발)

  • Yoon, Seongsim
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.335-346
    • /
    • 2017
  • This study generated the radar-based forecasted rainfall using spatial-scale decomposition method (SCDM) and evaluated the hydrological applicability with forecasted rainfall by KMA (MAPLE, KONOS) in terms of urban flood forecasting. SCDM is to separate the small-scale field (convective cell) and large-scale field (straitform cell) from radar rainfield. And each separated field is forecasted by translation model and storm tracker nowcasting model for improvement of QPF accuracy. As the evaluated results of various QPF for three rainfall events in Seoul and Metropolitan area, proposed method showed better prediction accuracy than MAPLE and KONOS considering the simplicity of the methodology. In addition, this study assessed the urban hydrological applicability for Gangnam basin. As the results, KONOS simulated the peak of water depth more accurately than MAPLE and SCDM, however cannot simulated the timeseries pattern of water depth. In the case of SCDM, the quantitative error was larger than observed water depth, but the simulated pattern was similar to observation. The SCDM will be useful information for flood forecasting if quantitative accuracy is improved through the adjustment technique and blending with NWP.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Structural Behavior of Sandwich Type GFRP Arch and Field Applicability (샌드위치형 GFRP 아치의 구조적 거동 및 현장 적용성)

  • Hwang, Dae-Won;Kim, Kwang-Woo;Kim, Yong-Seong;Yeon, Kyu-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.85-93
    • /
    • 2018
  • This study investigated the structural behavior and field applicability of sandwich type GFRP arches with polymer mortar in core. As a result, in case of crack loading and failure loading, total strains at crown were the highest; the fracture strain at crown was 0.01690, which is 4.2 times greater than the fracture strain (0.004) of cement concrete. The 3 % deflection load was 17.42 kN, the flexural strength was $163.98{\times}10^{-3}GPa$, and the flexural elastic modulus was 11.884 GPa. From load-deflection relationship up to 3.5 % deflection, 3D analysis results and experimental values were observed to be almost identical. It was considered reasonable to set a deflection rate limit to be 3 % for structural safety purpose. The standard external flexural strength of semicircular arch used in this study was approximately 2.64 times higher than that of hume pipe (2 type standard) and tripled composite pipe. The external pressure strength at fracture was approximately 1.57 times higher than that of hume pipe. It was confirmed that the implementing semicircular arch had mechanically more advantage than the circular pipe. Optimum member thickness was 8~53 mm according to arch radius of 450~1,800 mm and cover depth of 2~10 m. It was found that the larger strength could be obtained even if the thickness of member was smaller than that of concrete structure. In field application study, figures and equations were derived for obtaining applicable cover depth and optimum member thickness according to loading conditions. These would be useful data for design and manufacture of sandwich type semicircular arch.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

Assessment of Characteristics and Field Applicability with TPA By-Product as Alternative External Carbon Source (대체 외부탄소원으로서의 TPA 생산부산물 특성 및 현장적용성 평가)

  • Jung, In-Chul;Jun, Sung-Gyu;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.480-486
    • /
    • 2006
  • On account of exchanging main process from chemical precipitation for MLE(Modified Ludzark-Ettinger), an external carbon source was required for supplementation of carbon source shortage that was needed biological denitrification in the S sewage treatment plant(S-STP). In this study, NUR(nitrate uptake rate), OUR(oxygen uptake rate) test and a field application test was conducted for the applicability assessment of Terephtalic acid(TPA) by-product contained about 4.7% acetate as alternative external carbon source. As the results, TPA by-product shows more rapid acclimation than methanol, 8.24 mg ${NO_3}^--N/g$ VSS/hr specific denitrification rate, 3.70 g $COD_{Cr}/g\;NO_3$ C/N ratio and 99.4% readily biodegradable COD contents. In the results of field application, the nutrient removal efficiency was high and effluent T-N concentration is 8.2 mg/L. It is concluded that TPA by-product is the proper alternative external carbon source.

Construction of Database for Application of APEX Model in Korea and Evaluation of Applicability to Highland Field (APEX 모델의 국내 적용을 위한 데이터베이스 구축 및 고랭지 밭에 대한 적용성 평가)

  • Koo, Ja-Young;Kim, Jonggun;Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.89-100
    • /
    • 2017
  • The Agricultural Policy/Environmental eXtender (APEX) model was developed to extend EPIC's capabilities of simulating land management impacts for small-medium watershed and heterogeneous farms. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes. APEX have its own agricultural environmental database including operation schedule, soil property, and weather data etc., by crops. However, agriculture environmental informations the APEX model has is all based on U.S. As this can cause malfunction or improper simulation while simulating highland field. In this study, database for APEX model to be utilized for South Korea established with 44,814 agriculture fields in Pyeongchang-gun, Korea from 2007 to 2016. And assessed domestic applicability by comparing T-P unit load criteria presented by National Institution of Environmental Research and result of APEX model. As a result of APEX model simulation, average T-P value for decade was 6.18. Average T-P of every year except 2011 was in range of 5.37~10.43 and this is being involved into criteria presented by National Institution of Environmental Research. It is analyzed that adjusting slope factor can make the model applicable for domestic agricultural environment.

Applicability of Soil Washing with Neutral Phosphate for Remediation of Arsenic-contaminated Soil at the Former Janghang Smelter Site ((구)장항제련소 주변 부지 매입구역 비소 오염토양에 대한 중성 인산염 토양세척법의 적용가능성 평가)

  • Im, Jinwoo;Kim, Young-Jin;Yang, Kyung;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2014
  • In accordance with the view on remediated soil as a resource, this study assessed the applicability of soil washing with the neutral phosphate for remediation of arsenic (As)-contaminated soil. Three soil samples of different land uses (i.e., rice paddy, upland field and forest land) were collected from the study site, and the aqua regia-extractable As concentrations were 59.2, 30.8 and 53.1 mg/kg, respectively. Among the neutral phosphate reagents, ammonium phosphate showed the highest As washing efficiency. The optimized washing condition was 2-hr washing with 0.5M ammonium phosphate solution (pH 6) and soil to liquid ratio of 1 : 5. The extraction efficiencies of As did not guarantee the residual soil As concentrations to satisfy the Korea soil regulatory level (i.e., Worrisome level) in the three soil samples. To enhance washing efficiency, the As-contaminated soil was submerged in washing solution (1 : 1, w/v) for 24 hr and 1-hr washing with 0.5M ammonium phosphate solution was tested. As extraction efficiencies of 36.1 (rice paddy), 21.4 (upland field) and 26.4% (forest land) were attained, which satisfied the Worrisome level for Region 1 (25 mg/kg of As) in rice paddy, but not in upland field and forest land.