• Title/Summary/Keyword: Fibular insertion

Search Result 3, Processing Time 0.015 seconds

New Surgical Technique for Harvesting Proximal Fibular Epiphysis in Free Vascularized Epiphyseal Transplantation (혈관부착 근위비골성장판 이식시 공여부 수술의 새로운 술식)

  • Chung, Duke-Whan
    • Archives of Reconstructive Microsurgery
    • /
    • v.5 no.1
    • /
    • pp.106-111
    • /
    • 1996
  • Purpose : Propose a surgical technique in donor harvesting method in free vascularized proximal fibular epiphysis. Methodology : Concerned about growth potentials of the transplanted epiphysis in our long term results of the epiphyseal transplanted 13 cases more than 4 years follow-up, anterior tibial artery which contains anterior tibial recurrent artery is most reliable vessel to proximal fibular epiphysis which is the best donor of the free vascularized epiphyseal transplantation. In vascular anatomical aspect proximal fibular epiphysis norished by latearl inferior genicular artery from popliteal, posterior tibial recurrent artery and anterior tibial recurrent artery from anterior tibial artery and peroneal artery through metaphysis. The lateral inferior genicular artery is very small and difficult to isolate, peroneal artery from metaphysis through epiphyseal plate can not give enough blood supply to epiphysis itself. The anterior tibial artery which include anterior tibial recurrent and posterior tibial recurrent artery is the best choice in this procedure. But anterior tibial recurrent artery merge from within one inch from bifucating point of the anterior and posterior tibial arteries from popliteal artery. So it is very difficult to get enough vascular pedicle length to anastomose in recipient vessel without vein graft even harvested from bifucating point from popliteal artery. Authors took recipient artery from distal direction of anterior tibial artery after ligation of the proximal popliteal side vessel, which can get unlimited pedicle length and safer dissection of the harvesting proximal fibular epiphysis. Results : This harvesting procedure can performed supine position, direct anterolateral approach to proximal tibiofibular joint. Dissect and isolate the biceps muscle insertion from fibular head, micro-dissection is needed to identify the anterior tibial recurrent arteries to proximal epiphysis, soft tissue release down to distal and deeper plane to find main anterior tibial artery which overlying on interosseous membrane. Special care is needed to protect peroneal nerve damage which across the surgical field. Conclusions : Proximal fibular epiphyseal transplantation with distally directed anterior tibial artery harvesting technique is effective and easier dissect and versatile application with much longer arterial pedicle.

  • PDF

Biceps Femoris Tendon and Lateral Collateral Ligament: Analysis of Insertion Pattern Using MRI (대퇴이두건과 외측 측부인대: 자기공명영상을 이용한 부착형태 유형의 분석)

  • Shin, Yun Kyung;Ryu, Kyung Nam;Park, Ji Seon;Lee, Jung Eun;Jin, Wook;Park, So Young;Yoon, So Hee;Lee, Kyung Ryeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • Purpose : The biceps femoris tendon (BFT) and lateral collateral ligament (LCL) in the knee were formerly known to form a conjoined tendon at the fibular attachment site. However, the BFT and LCL are attached into the fibular head in various patterns. We classified insertion patterns of the BFT and LCL using MR imaging, and analyzed whether the LCL attaches to the fibular head or not. Materials and Methods: A total of 494 consecutive knee MRIs of 470 patients taken between July 2012 and December 2012 were retrospectively reviewed. There were 224 males and 246 females, and patient age varied from 10 to 88 (mean, 48.6). The exclusion criteria were previous surgery and poor image quality. Using 3T fat-suppressed proton density-weighted axial images, the fibular insertion patterns of the BFT and LCL were classified into following types: type I (the LCL passes between the anterior arm and direct arm of the BFT's long head), type II (the LCL joins with anterior arm of the long head of the BFT), type III (the BFT and LCL join to form a conjoined tendon), type IV (the LCL passes laterally around the anterior margin of the BFT), and type V (the LCL passes posteriorly to the direct arm of the BFT's long head). Results: Among the 494 cases of the knee MRI, there were 433 (87.65%) type I cases, 21 (4.25%) type II cases, 2 (0.4%) type III cases, 16 (3.23%) type IV cases, and 22 (4.45%) type V cases. There were 26 cases (5.26%) in which the LCL and BFT were not attached into the fibular head. Conclusion: The fibular attachment pattern of the BFT and LCL shows diverse types in MR imaging. The LCL does not adhere to the head in some patients.

Strut Support with Tricortical Iliac Allografts in Unstable Proximal Humerus Fractures: Surgical Indication and New Definition of Poor Medial Column Support

  • Lee, Seung-Jin;Hyun, Yoon-Suk;Baek, Seung-Ha
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Background: The execution of fibular allograft augmentation in unstable proximal humerus fractures (PHFs) was technically demanding. In this study, the authors evaluated the clinical and radiographic outcomes after tricortical iliac allograft (TIA) augmentation in PHFs. Methods: We retrospectively assessed 38 PHF patients treated with locking-plate fixation and TIA augmentation. Insertion of a TIA was indicated when an unstable PHF showed a large cavitary defect and poor medial column support after open reduction, regardless of the presence of medial cortical comminution in preoperative images. Radiographic imaging parameters (humeral head height, HHH; humeral neck-shaft angle, HNSA; head mediolateral offset, HMLO; and status of the union), Constant score, and range of motion were evaluated. Patients were grouped according to whether the medial column support after open reduction was poor or not (groups A and B, respectively); clinical outcomes were compared for all parameters. Results: All fractures healed radiologically (average duration to complete union, 5.8 months). At final evaluation, the average Constant score was 73 points and the mean active forward flexion was $148^{\circ}$. Based on the Paavolainen assessment method, 33 patients had good results and 5 patients showed fair results. The mean loss of reduction was 1.32 mm in HHH and 5.02% in HMLO. None of the parameters evaluated showed a statistically significant difference between the two groups (poor and not poor medial column support). Conclusions: In unstable PHFs, TIA augmentation can provide good clinical and radiological results when there are poor medial column support and a large cavitary defect after open reduction.