• 제목/요약/키워드: Fibrin(ogen)olytic enzyme

검색결과 3건 처리시간 0.015초

Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides

  • Choi, Suk-Ho;Lee, Seung-Bae
    • 대한약침학회지
    • /
    • 제16권2호
    • /
    • pp.46-54
    • /
    • 2013
  • Objective: This study was undertaken to isolate a fibrin(ogen)olytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate the enzymatic characteristics and hemorrhagic activity of the isolated enzyme as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were determined by using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrin(ogen)olytic enzyme with the molecular weight of 27 kDa (FE-27kDa) isolated from G. b. siniticus venom consisted of two heterogenous disulfide bond-linked polypeptides with the molecular weights of 15 kDa and 18 kDa. When more than $20{\mu}g$ of FE-27kDa was applied on the fibrin plate, fibrinolysis zone was formed as indicating its fibrinolytic activity. The fibrinolytic activity was inhibited completely by phenylmethanesulfonylfluoride (PMSF) and ethylenediaminetetraacetic acid (EDTA) and partially by thiothreitol and cysteine. Metal ions such as $Hg^{2+}$ and $Fe^{2+}$ inhibited the fibrinolytic activity completely, but $Mn^{2+}$ did not. FE-27kDa preferentially hydrolyzed ${\alpha}$-chain of fibrinogen and slowly hydrolyzed ${\beta}$-chain, but did not hydrolyze ${\gamma}$-chain. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into polypeptides with molecular weights of more than 45 kDa. A dosage of more than $10{\mu}g$ of FE-27kDa per mouse was required to induce hemorrhage beneath the skin. Conclusion: FE-27kDa was a serine proteinase consisting of two heterogeneous polypeptides, hydrolyzed fibrin, fibrinogen, and gelatin, and caused hemorrhage beneath the skin of mouse. This study suggests that the potential of FE-27kDa as pharmacopuncture agent should be limited due to low fibrinolytic activity and a possible side effect of hemorrhage.

한국 독사독으로부터의 혈전 용해제 개발에 관한 연구 I. 살모사(A. bromhoffi brevicaudus) 사독 Protease의 정제에 관한 연구 (Studies on the Development of a Thrombolytic Agent from Korean Snake Venom I. Purification of a Protease from the Venom of A. bromhoffi brevicaudus)

  • 이문한;김병재;임종섭;이항;이혜숙;김종호;채창수
    • Biomolecules & Therapeutics
    • /
    • 제3권2호
    • /
    • pp.159-164
    • /
    • 1995
  • Fibrinolytic and fibrinogenolytic activities of the venoms from the Korean snakes, Agkistrodon caliginosus, nosus, Agkistrodon saxatilis and Agkistrodon blomhoffi brevicaudus were compared by fibrin-plate method and polyacrylamide gel electrophoresis, respectively. The venom from A. blomhoffi brevicaudus showed the highest degree of fibrin(ogen)olytic activity, and a protease with the fibrin(open)olytic activity was purified by p-amino-benzamidine affinity chromatography and DEAE ion-exchange chromatography. The purified enzyme had a molecular weight of 50,800 and a capability to degrade the B$\beta$-chain of fibrinogen preferentially to the $A\alpha$-chain, but not the ${\gamma}$-chain. Fibrinolytic activity of the purified enzyme was approximately 3.8 plasmin unit/mg protein.

  • PDF

Isolation and Characterization of a 32-kDa Fibrinolytic Enzyme (FE-32kDa) from Gloydius blomhoffii siniticus Venom -Fibrinolytic Enzyme from Gloydius blomhoffii siniticus Venom-

  • Kim, Joung-Yoon;Lee, Seung-Bae;Kwon, Ki Rok;Choi, Suk-Ho
    • 대한약침학회지
    • /
    • 제17권1호
    • /
    • pp.44-50
    • /
    • 2014
  • Objectives: This study was undertaken to isolate a fibrinolytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate its enzymatic characteristics and hemorrhagic activity as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were investigated using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrinolytic enzyme with the molecular weight of 32kDa (FE-32kDa) from Gloydius blomhoffii siniticus showed a fibrin hydrolysis zone at the concentration of 0.2 mg/mL in the fibrin plate assay. The fibrin hydrolysis activity of the enzyme was inhibited completely by ethylenediaminetetraacetic acid (EDTA), ethyleneglycoltetraacetic acid (EGTA), and 1, 10-phenanthroline, thiothreitol and cysteine, and partially by phenylmethanesulfonylfluoride (PMSF). Metal ions such as $Fe^{2+}$ and $Hg^{2+}$ inhibited the fibrin hydrolysis completely, but $Zn^{2+}$ enhanced it. FE-32kDa hydrolyzed ${\alpha}$-chain but did not hydrolyze ${\beta}$-chain and ${\gamma}$-chain of fibrinogen. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into low-molecular-weight polypeptides, but the extent of hydrolysis was limited. FE-32kDa induced hemorrhage beneath back skin of mice at the dose of $2{\mu}g$. Conclusions: FE-32kDa is a ${\alpha}$-fibrin(ogen)olytic metalloprotease that requires $Zn^{2+}$ for fibrinolytic activity and causes hemorrhage, suggesting that the enzyme is not appropriate for use as a clinical pharmacopuncture.