• 제목/요약/키워드: Fibrillated fiber

검색결과 22건 처리시간 0.023초

FPF(Fibrillated Polypropylene Fiber)보강 성토재료의 강도 특성에 관한 연구 (Characteristics of Soils Reinforced by FPF(Fibrillated Polypropylene Fiber))

  • 김낙경;박종식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.433-440
    • /
    • 2001
  • This study was to analyze characteristics of soils reinforced by FPF(Fibrillated Polypropylene Fiber). Laboratory test, model test and field tests were performed on soils reinforced by fibers, to evaluate the shear strength characteristics. For the silty sand, clayey sand and silty clay, the influence of fiber shape, fiber length and fiber content were evaluated from compaction test, direct shear test, uniaxial test, california bearing ratio(CBR) test. Fibrillated type fiber, 5cm long with a content of 0.5% shows 5∼30% increase of friction angle and 7∼55 percent increase of CBR value.

  • PDF

섬유혼합토의 전단강도 특성 (Shear Strength Properties of Fiber Mixed Soil)

  • 차현주;최재원;이상호
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.123-128
    • /
    • 2002
  • This study was performed to use fiber mixed soil which has clayey soil or sandy soil with fibrillated fiber or monofilament fiber on purpose of construction materials, filling materials, and back filling materials. In addition, this study was conducted to analyze strength properties and fiber reinforcing effect with fiber mixed soil by direct-shear test. In case of fibrillated fiber mixed soil, the more quantity of fiber was in both cohesive soil and sandy soil, the larger shear stress was in respective step of normal load. The respective mixed soil at 0.5% and 0.1% mixing ratio of monofilament fiber mixed soil showed maximum shear stress. According to unconfined compression or direct-shear test, making specimen of the monofilament fiber mixed soil, it is required to be careful and stable mixing method, while it is expected that monofilament fiber mixed soil doesn't increase strength.

섬유 보강토의 균열 특성 연구 (A Study on the Crack Characteristics of the Syntetic Fiber Reinforced Soil)

  • 송창섭
    • 한국농공학회지
    • /
    • 제41권3호
    • /
    • pp.59-65
    • /
    • 1999
  • This study has been performed to confirm the three dimensional effect of the crack reduction and the restrained effect of crack growth for the synthetic fiber reinforced soil. Two types of polyrpropylene fiber and low plastic clay(CL) were used for the test. And the test variable were fiber length and so on. The results of the study were summarized as follows ; 1) The mixing of synthetic fiber was effective in reducing crack growth due to adhesion between soil partlcles and synthetic fiber.l Especially initlal crack was delayed, as compared with the pure soil, for about 1 day in case of mono filament synthetic fiber and for about 1 or 2 days in case of fibrillated syntetic fiber. 2) As the content and length of synthetic fiber were increased , the effect of crack reduction was increased. It was found that 0.5% fibrillated synthetic fiber with 40mm length reinforced soil had about 3 times more effective than natural soils. 3) In case of the same fiber content and fiber length, the fibrillated synthetic fiber has nmore effective than the mono filament synthetic fiber for crack reduction.

  • PDF

보강 혼합토의 역학적 특성(II) -섬유 혼합토- (Mechanical Characteristics of Reinforced Soil(II) -Fiber Reinforced Soil-)

  • 송창섭;임성윤
    • 한국환경복원기술학회지
    • /
    • 제5권6호
    • /
    • pp.37-42
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with polypropylene fiber, and to confirm the reinforcing effects with admixture such as polypropylene fiber. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and polypropylene fiber reinforced soil. In order to determine proper moisture contents and mixing ratio, pilot test was carried out for natural soil and PFRS(polypropylene fiber reinforced soil). And the mixing ratio of mono-filament fiber and fibrillated polypropylene fiber admixture was 0.1%, 0.3%, 0.5% and 1.0% by the weight of dry soil. From the experimental results, it was found that the optimum moisture contents(OMC) increased with the mixing ratio of fiber, but the maximum dry unit weight and the volume change was decreased with the mixing ratio. It means that the improvement of the workability and the reduction of the weight of embankment was done by the addition of the polypropylene fiber. And, from the compression test results, it was found that the addition of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil was more effective than the mono-filament polypropylene fiber reinforced soil.

장기적 건조수축에 의한 보강혼합토의 단위 중량 및 압축강도 분석 (Variation of Unit Weight and Compressive Strength by Long-Term Dry Shrinkage of Reinforced Soil Mixture)

  • 이상호;차현주;장병욱
    • 한국농공학회지
    • /
    • 제42권6호
    • /
    • pp.90-97
    • /
    • 2000
  • In this study, the variation of unit weight and unconfined compressive strength were investigated, calcium carbonate, quicklime, portland cement, 19mm length monofilaments and fibrillated fiber were used as reinforcement materials. And calcium chloride was added to cement and calcium carbonate reinforced soil mixture in order to accelerate setting and hardening speed. It appears that unit weight is highest in calcium carbonate reinforced soil mixture with mixing rate of 9%. According to increasing the amount of fiber in soil mixture, the unit weight decreased. It shows that the more the amount of monofilament fiber is added in soil mixture, the higher the compressive strength is, but the compressive strength is decreased in fibrillated fibrillated fiber added soil mixture with more than 1.0% of mixing rate.

  • PDF

사면보수보강을 위한 FPF 보강공법개발 (FPF(Fibrillated Polypropylene Fiber) Reinforcement Method for Slope Repair)

  • 김낙경;박동원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.257-264
    • /
    • 2001
  • This study presents the slope stability analysis results for the model slope test. The model slope was made of the soil reinforced by FPF(Fibrillated Polyprophylene Fiber). The shear strength properties of the soil reinforced by FPF fibers were evaluated through the direct shear tests. The model slope 1:1 and 1:1.5 were made and the load tests were performed. Back analysis using limit equilibrium method was carried out to evaluate the shear strength increase on the FPF reinforced slope. The factor of safety of the FPF reinforce slope increased about 23% over unreinforced slope.

  • PDF

폴리프로필렌 섬유보강 콘크리트의 파괴특성 연구 (Fracture Characteristics of Polypropylene Fiber Reinforced Concrete)

  • Shin-Won Paik
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.230-240
    • /
    • 1997
  • 본 연구에서는 폴리프로필렌 섬유보강 콘크리트의 파괴특성을 알아보기 위해 Monofilament 섬유와 Fibrillated 섬유의 두 종류 폴리프로필렌 섬유를 선택하여 10$\times$10$\times$50 cm 보 시편을 만들었는데, 이때 사용된 두 종류의 섬유 길이는 19 mm이고, 섬유 혼입량은 0%, 1%, 2%, 3%로 하였으며, 초기균열 깊이의 영향을 알아보기 위해 초기 균열길이를 각 섬유 혼입량에 따라 1.5cm, 3.0cm, 4.5cm로 하여 실험을 수행하였다. 또한, 본 연구에서는 폴리프로필렌 섬유보강 콘크리트의 파괴특성을 규명하기 위해 보 시편에 대한 4 점 하중 휨시험을 통해 하중-하중점 변위 곡선을 각 시편에 대해 측정하였고, 이때 COD 게이지를 이용하여 하중-CMOD 곡선도 측정할 수 있었다. 이러한 실험결과를 통해, 섬유혼입량과 초기 균열 깊이에 따른 압축강도, 휨강도 및 휨인성, 응력확대계수, 파괴에너지 등이 규명되었다. 이러한 결과에 대한 분석으로부터 Fibrillated 폴리프로필렌 섬유가 Monofilament 섬유보다 연성 효과가 큰 것을 알 수 있었으며, 특히 하중-CMOD 곡선으로부터 계산되는 파괴에너지인 Jc가 믿을만한 파괴특성 인자임을 알 수 있었다.

  • PDF

섬유 보강토의 균열 특성 연구 (A study on the crack characteristics of the Synthetic Fiber reinforced Soil)

  • 송창섭;이신호;반창현;인현식
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.431-437
    • /
    • 1998
  • This study was performed to ascertain the three-dimensional effect of the crack reduction and the restrained effect of crack growth, and to yield a suitable mixing ratio of the synthetic fiber reinforced soil. The results of the study are as follows ; 1) The synthetic fiber has the resisting force for crack because of the adhesion due to the attraction of soil particles. 2) As the synthetic fiber length and the mixing ratio are increased, mono filament synthetic fiber reinforced soil is increased the effects of crack reduction and the restraint of crack growth. 3) The fibrillated synthetic fiber is more effective than mono filament synthetic fiber for crack. 4) A suitable mixing ratio of synthetic fiber reinforced soil is 0.5% of the fibrillated synthetic fiber.

  • PDF

섬유 보강토의 다짐 및 강도 특성 (Characteristics of Compaction and Stregth for Synthetic Fiber Reinforced Soils)

  • 송창섭
    • 한국농공학회지
    • /
    • 제41권5호
    • /
    • pp.93-98
    • /
    • 1999
  • The results of an experimental investigation on the characteristics of compaction and compressive strength of polypropylene fiber reinforced soil are presented in this paper. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$dmax (maximum dry unit weight), with four different contents (i.e., 0.1%, 0.3%, 0.5% and 1.0% weights ) of mono-filament and fibrillated polypropylene fibers. From the compaction test results, it is found that OMC increased with the contents ratio of fiber, but ${\gamma}$dmax decreased. It means that the improvement of the workability and the reduction of the weight of embankment structures by the asddtion of the polypropylene fiber. And, from the compression test results, it is found that the additon of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil is more effective than the mono-filament polypropylene fiber reinforced soil.

  • PDF

섬유 보강토의 다짐 및 강도 특성 (Characteristics of compaction and strength for synthetic fiber reinforcement soils)

  • 송창섭;장병욱;이용범;임성윤
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.444-448
    • /
    • 1998
  • This paper presents the results of an experimental investigation on the compaction and compressive strength of polypropylene fiber reinforced soils. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$$_{dmax}$ (maximum dry unit weight), with four different concentrations(i.e., 0.1%, 0.3%, 0.5% and 1.0% weights) of mono-filament and fibrillated polypropylene fibers. The test results indicate an appreciable increase in strength due to addition of fibers. OMC is increased with the concentration ratio of fiber, but ${\gamma}$$_{dmax}$ is decreased. From the viewpoint of strength, the fibrillated polypropylene fiber soil is more effective than the mono-filament polypropylene fiber soil.oil.

  • PDF