• Title/Summary/Keyword: Fibonacci numbers

Search Result 56, Processing Time 0.021 seconds

A Study on Teaching Material for Enhancing Mathematical Reasoning and Connections - Figurate numbers, Pascal's triangle, Fibonacci sequence - (수학적 추론과 연결성의 교수.학습을 위한 소재 연구 -도형수, 파스칼 삼각형, 피보나치 수열을 중심으로-)

  • Son, Hong-Chan
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.619-638
    • /
    • 2010
  • In this paper, we listed and reviewed some properties on polygonal numbers, pyramidal numbers and Pascal's triangle, and Fibonacci sequence. We discussed that the properties of gnomonic numbers, polygonal numbers and pyramidal numbers are explained integratively by introducing the generalized k-dimensional pyramidal numbers. And we also discussed that the properties of those numbers and relationships among generalized k-dimensional pyramidal numbers, Pascal's triangle and Fibonacci sequence are suitable for teaching and learning of mathematical reasoning and connections.

  • PDF

Lucas-Euler Relations Using Balancing and Lucas-Balancing Polynomials

  • Frontczak, Robert;Goy, Taras
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.473-486
    • /
    • 2021
  • We establish some new combinatorial identities involving Euler polynomials and balancing (Lucas-balancing) polynomials. The derivations use elementary techniques and are based on functional equations for the respective generating functions. From these polynomial relations, we deduce interesting identities with Fibonacci and Lucas numbers, and Euler numbers. The results must be regarded as companion results to some Fibonacci-Bernoulli identities, which we derived in our previous paper.

The design of interconnection network using postorder traversal on Fibonacci tree (피보나치 트리에서 후위순회를 이용한 상호 연결망의 설계)

  • 유명기;김용석
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.63-66
    • /
    • 2001
  • In this paper, We propose the new interconnection network which is designed to edge numbering labeling using postorder traversal which can reduce diameter when it has same node number with Hypercube, which can reduce total node numbers considering node degree and diameter on Fibonacci trees and its jump sequence of circulant is Fibonacci numbers. It has a simple (shortest oath)routing algorithm, diameter, node degree. It has a spaning subtree which is Fibonacci tree and it is embedded to Fibonacci tree. It is compared with Hypercube. We improve diameter compared with Hypercube.

  • PDF

SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES

  • Miladinovic, Marko;Stanimirovic, Predrag
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.33-48
    • /
    • 2011
  • The notion of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,s)}$ of type s, whose nonzero elements are generalized Fibonacci numbers, is introduced in the paper [23]. Regular case s = 0 is investigated in [23]. In the present article we consider singular case s = -1. Pseudoinverse of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,-1)}$ is derived. Correlations between the matrix $\mathcal{F}_n^{(a,b,-1)}$ and the Pascal matrices are considered. Some combinatorial identities involving generalized Fibonacci numbers are derived. A class of test matrices for computing the Moore-Penrose inverse is presented in the last section.

FIBONACCI LENGTHS INVOLVING THE WALL NUMBER k(n)

  • DOOSTIE H.;HASHEMI M.
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.171-180
    • /
    • 2006
  • Two infinite classes of special finite groups considered (The group G is special, if G' and Z(G) coincide). Using certain sequences of numbers we give explicit formulas for the Fibonacci lenghts of these classes which involve the well-known Wall numbers k(n).

CATALAN TRANSFORM OF THE κ-FIBONACCI SEQUENCE

  • Falcon, Sergio
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.827-832
    • /
    • 2013
  • In this paper we apply the Catalan transform to the ${\kappa}$-Fibonacci sequence finding different integer sequences, some of which are indexed in OEIS and others not. After we apply the Hankel transform to the Catalan transform of the ${\kappa}$-Fibonacci sequence and obtain an unusual property.

ON A CLASS OF q-BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER RELATED TO SHELL-LIKE CURVES CONNECTED WITH THE FIBONACCI NUMBERS

  • Ahuja, Om P.;Cetinkaya, Asena;Bohra, Nisha
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.319-330
    • /
    • 2020
  • We introduce a new subclass of q-bi-univalent functions of complex order related to shell-like curves connected with the Fibonacci numbers. We obtain the coefficient estimates and Fekete-Szegö inequalities for the functions belonging to this class. Relevant connections with various other known classes have been illustrated.

The Fibonacci Edge Labeling on Fibonacci Trees

  • Kim, yong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.731-734
    • /
    • 2000
  • We present a novel graph labeling problem called Fibonacci edge labeling. The constraint in this labeling is placed on the allowable edge label which is the difference between the labels of endvertices of an edge. Each edge label should be (3m+2)-th Fibonacci numbers. We show that every Fibonacci tree can be labeled Fibonacci edge labeling. The labelings on the Fibonacci trees are applied to their embeddings into Fibonacci Circulants.

  • PDF

On integration of Pythagoras and Fibonacci numbers (피보나치 수를 활용한 피타고라스 수의 통합적 고찰)

  • Choi, Eunmi;Kim, Si Myung
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.151-164
    • /
    • 2015
  • The purpose of this paper is to develop a teaching and learning material integrated two subjects Pythagorean theorem and Fibonacci numbers. Traditionally the former subject belongs to geometry area and the latter is in algebra area. In this work we integrate these two issues and make a discovery method to generate infinitely many Pythagorean numbers by means of Fibonacci numbers. We have used this article as a teaching and learning material for a science high school and found that it is very appropriate for those students in advanced geometry and number theory courses.