• Title/Summary/Keyword: Fiber-softener

Search Result 16, Processing Time 0.018 seconds

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.

Preparation of Fabric Softener Product by using Amine-functionalized Magnesium-phyllosilicates (아민기로 관능화된 마그네슘-층상규산염을 이용한 섬유유연제 제조)

  • Kim, Seong Yeol;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.580-585
    • /
    • 2019
  • In this study, we synthesized amine-functionalized magnesium-phyllosilicates (AF-MgP) with an octahedral and tetrahedral structure using (3-aminopropyl)triethoxysilane. The synthesis of AF-MgP, surface functionalization of amine and 1 : 2 ratio of the octahedral and tetrahedral structure were confirmed by FT-IR and XRD analysis. In addition, it was confirmed that AF-MgP was absorbed evenly on the surface of cotton fibers and coated on the cotton fibers from HR-SEM and EDX analysis. The antimicrobial activity test of cotton fibers according to KS confirmed that cotton fibers coated with AF-MgP particles show an enhanced antimicrobial activity against cutaneous microorganisms. Our results suggest that AF-MgP is not only applied as a functional nanomaterial that gives the cotton fiber antimicrobiality, but also can be used in the field of cosmetic and biomedical materials.

Development of Susceptible Functional Fiber through Chitosan Finishing Treatment of Tencel Blended Fabrics (Part I) - Surface Structure Analysis and Hand Value Assessment - (텐셀 혼방 직물의 키토산 가공처리를 통한 감성기능 소재의 개발 (제1보) - 표면구조 분석 및 태 평가 -)

  • Park Youn-Hee;Bae Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.987-996
    • /
    • 2005
  • For cationization, if chitosan, which has the affinity for a human body and reacts easily without inducing any pollution, is used, cationization of Tencel blended fabrics can be expected and further expansion of its use as a new susceptible material can be expected. Therefore, in this study, in order to compare a Tencel/cotton and a Tencel/Cotton/PET as Tencel blended fabrics with a Tencel single fabric, the fabric samples were used and processed with chitosan after NaOH pretreatment and enzyme treatment thereof, and then its adherent efficiency was enhanced by using a crosslinking agent, and then it was got to be finished with a softener. The fibril of Tencel fabric was controlled by enzyme treatment so that the surface of the Tencel blended fabrics got to be smooth. Chitosan adhered to the surface of the Tencel blended fabrics in the form of particles through its processing with chitosan. Chitosan treatment caused little change in the crystal structure thereof and the thermal stability of the Tencel/Cotton/PET fabric was slightly improved. The total hand value(THV) calculated on the basis of the change due to chitosan treatment was increased in all samples.

Development of Susceptible Functional Fiber through Chitosan Finishing Treatment of Tencel Blended Fabrics (Part II) -The Change of Physical Properties- (텐셀 혼방직물의 키토산 가공처리를 통한 감성기능소재의 개발 (제2보) -물성의 변화-)

  • Park, Youn-Hee;Bae, Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1572-1582
    • /
    • 2006
  • In this study, in order to compare a Tencel/cotton and a Tencel/Cotton/PET as Tencel blended fabrics with a Tencel fabric, the fabric samples were treated with chitosan after NaOH pretreatment and enzyme treatment thereof, And then its adherent efficiency was enhanced by using a crosslinking agent. After that, it was treated with a softener. In chitosan treatment, the functions of moisture regain, tensile strength, air permeability and crease resistance were more improved in the Tencel blended fabrics than in the Tencel fabric. Thus, it may be thought that the physical properties of the Tencel blended fabrics were more effectively modified than those of the Tencel fabric. And the friction charged voltage was very much reduced in all samples, so that chitosan treatment was effective for prevention of electrostatic charge. Further, chitosan finishing treatment improved remarkably the antibacterial activity in all samples regardless of the type of strains.

Subjective Sensation and Tactile Preference of Face Towel Fabrics by Pile Fiber Type and Laundering Time (세면용 타월의 파일섬유 종류와 세탁에 따른 주관적 감각과 촉감 선호도)

  • Na, Younhee;Seo, Sangwon;Choi, Jongmyoung
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.89-100
    • /
    • 2018
  • This study was performed to develop face towel fabrics that reflect consumer's tactile preferences. Three different kinds of pile fiber (100% cotton, 50% cotton/50% bamboo, 100% bamboo) of the towel fabrics were selected for the test. The towels were laundered one, five and 10 times repeatedly in a normal washing condition, and fabric softeners were applied to the towels that were laundered 10 times. The flexibility and absorbency (absorption rate and water absorptivity) were evaluated by laundering times of the face towels. Male and female university students evaluated their subjective sensations of the face towels. The flexibility of towel fabrics showed no significant difference according to type of pile fiber or laundering time. The absorbency of the towels was significantly different according to the type of pile fiber and laundering time. The absorption rate was higher in 100% bamboo fiber, and water absorptivity was higher for cotton fibers. There were no significant differences in subjective sensation according to the type of pile fiber of towels before laundering. As the frequency of laundering increased, the tactile preference for the towel slightly decreased. The 100% bamboo towel was rated the most comfortable among the three kinds of towels. The tactile preference for the towels was influenced by smoothness, fabric softness, and softener treatment, in that order.

Effect of Textile Care on Physical Properties and Biodegradability of Cellulose Fabrics (관리 방법에 따른 섬유소계 직물의 물리적 특성 변화 및 생분해성 평가)

  • 이혜원;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.173-182
    • /
    • 2001
  • The physical properties and biodegradability of cellulose fabrics, such as cotton and rayon, are expected to vary with textile care. In this study cotton and rayon fabrics were washed repeatedly with detergents, bleaches, or softeners. The changes of physical properties were investigated by measuring retention of breaking strength, shrinkage, handle, and the fiber surface was observed by SEM. The biodegradability of fabrics was also estimated by soil burial test. The results were as follows. Cotton fabrics laundered repeatedly by detergents and bleaches lost virtually no strength. The breaking strength of the rayon fabrics decreased by about 17%∼25% after repeated launderings. Shrinkage in weft direction was much larger than that in warp direction. Bending rigidities of both fabrics decreased remarkably within 10 wash cycles. Shear rigidity in cotton fabrics increased continuously with repeated washing cycles, however, that in rayon fabrics did not show any change as washing went on. Friction coefficient increased in both fabrics after 10 wash cycles, and this is thought to be attributed to the wrinkle, interlocking of hairs, surface damage resulted from repeated washings. In cotton fabrics made of staple yarns, short hairs on the yarn surface entangled together with repeated launderings. This resulted in the continuous increase in % shrinkage, shear rigidity, friction coefficient. Rayon fabrics made of filament yarns, however, did not show this phenomenon. Softener treated fabrics showed the lowest values in bending rigidity, shear rigidity and friction coefficient because the cationic surfactants adsorbed on the fiber surface behaved like lubricants. The biodegradability of fabrics was noticeably affected by the composition of washing solutions. The fabrics washed with detergents and bleaches were decomposed faster than those washed with the others were and the cotton fabrics washed with detergents and softeners hardly degraded. The fabrics soiled with milk were decomposed almost completely and those soiled with Palmitic acid did not degrade greatly.

  • PDF