• 제목/요약/키워드: Fiber-reinforced polymer jacket

검색결과 12건 처리시간 0.02초

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델 (Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System)

  • 신지욱;전종수;김준희
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

Slender RC columns strengthened with combined CFRP and steel jacket under axial load

  • Lu, Yi-yan;Li, Na;Li, Shan;Ou, Tian-yan
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1077-1094
    • /
    • 2015
  • This paper presents an experimental study on the effectiveness of simultaneous application of carbon fiber-reinforced polymer (CFRP) and steel jacket in strengthening slender reinforced concrete (RC) column. The columns were 200 mm square cross section with lengths ranging from 1600 to 3000 mm. Ten columns were tested under axial load. The effects of the strengthening technique, slenderness ratio, cross-section area of steel angle and CFRP layer number were examined in terms of axial load-axial strain curve, CFRP strain, steel strip strain and steel angle strain. The experiments indicate that strengthening RC columns with combined CFRP and steel jacket is effective in enhancing the load capacity, ductility and energy dissipation capacity of RC column. Based on the existing models for RC columns strengthened with CFRP and with steel jacket, a design formula considering a slenderness reduction factor is proposed to predict the load capacity of the RC columns strengthened with combined CFRP and steel jacket. The predictions agree well with the experimental results.

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

  • Marina L. Moretti
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.97-109
    • /
    • 2023
  • This experimental study investigates the effectiveness of applying carbon fiber reinforced polymer (CFRP) jackets for the retrofit of short reinforced concrete (RC) columns with inadequate transverse reinforcement and stirrup spacing to longitudinal rebar diameter equal to 12. RC columns scaled at 1/3, with round and square section, were subjected to axial compression up to failure. A damage scale is introduced for the assessment of the damage severity, which focusses on the extent of buckling of the longitudinal rebars. The damaged specimens were subsequently repaired with unidirectional CFRP jackets without any treatment of the buckled reinforcing bars and were finally re-tested to failure. Test results indicate that CFRP jackets may be effectively applied to rehabilitate RC columns (a) with inadequate transverse reinforcement constructed according to older practices so as to meet modern code requirements, and (b) with moderately buckled bars without the need of previously repairing the reinforcement bars, an application technique which may considerably facilitate the retrofit of earthquake damaged RC columns. Factors for the estimation of the reduced mechanical properties of the repaired specimens compared to the respective values for intact CFRP-jacketed specimens, in relation to the level of damage prior to retrofit, are proposed both for the compressive strength and the average modulus of elasticity. It was determined that the compressive strength of the retrofitted CFRP-jacketed columns is reduced by 90% to 65%, while the average modulus of elasticity is lower by 60% to 25% in respect to similar undamaged columns jacketed with the same layers of CFRP.

비내진 철근콘크리트 건축물의 FRP 재킷에 대한 내진보강 설계 전략 (Seismic Retrofit Scheme of FRP Column Jacketing System for Non-Seismic RC Building Frame)

  • 황희진;김혜원;오근영;신지욱
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.293-301
    • /
    • 2023
  • Existing reinforced concrete buildings with seismically deficient details have premature failure under earthquake loads. The fiber-reinforced polymer column jacket enhances the lateral resisting capacities with additional confining pressures. This paper aims to quantify the retrofit effect varying the confinement and stiffness-related parameters under three earthquake scenarios and establish the retrofit strategy. The retrofit effects were estimated by comparing energy demands between non-retrofitted and retrofitted conditions. The retrofit design parameters are determined considering seismic hazard levels to maximize the retrofit effects. The critical parameters of the retrofit system were determined by the confinement-related parameters at moderate and high seismic levels and the stiffness-related parameters at low seismic levels.

COMPRESSIVE STRENGH OF FRP-CONFINED CONCRETE COLUMNS UNDER THE ECCENTRIC LOADS

  • H.R. Salehian;M.R. Esfahani
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.978-982
    • /
    • 2009
  • In recent years, due to some excellent properties of fiber reinforced polymer (FRP) composites, the use of FRP sheets for strengthening the weak concrete columns have become increasingly popular. Axial loading is the basic assumption in most of the models that are presented for estimating the compression strength of confined concrete columns. However a large number of weak concrete columns in the bending frames are under the combination of both axial and flexural loads. This paper presents the results of an experimental study on the effects of eccentricity of load on the compressive strength of concrete columns confined by FRP sheets. This research shows that the eccentricity of compression load affects decreasingly the performance of confining FRP jacket in confined columns.

  • PDF

Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression

  • Wang, Jun;Liu, Weiqing;Zhou, Ding;Zhu, Lu;Fang, Hai
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.431-452
    • /
    • 2014
  • The present study focuses on the mechanical behaviour of concrete filled double skin steel tubular (CFDST) stub columns confined by fiber reinforced polymer (FRP). A series of axial compression tests have been conducted on two CFDST stub columns, eight CFDST stub columns confined by FRP and a concrete-filled steel tubular (CFST) stub column confined by FRP, respectively. The influences of hollow section ratio, FRP wall thickness and fibre longitudinal-circumferential proportion on the load-strain curve and the concrete stress-strain curve for stub columns with annular section were discussed. The test results displayed that the FRP jacket can obviously enhance the carrying capacity of stub columns. Based on the test results, a new model which includes the effects of confinement factor, hollow section ratio and lateral confining pressure of the outer steel tube was proposed to calculate the compressive strength of confined concrete. Using the present concrete strength model, the formula to predict the carrying capacity of CFDST stub columns confined by FRP was derived. The theoretically predicted results agree well with those obtained from the experiments and FE analysis. The present method is also adapted to calculate the carrying capacity of CFST stub columns confined by FRP.

Restoration of pre-damaged RC bridge columns using basalt FRP composites

  • Fahmy, Mohamed F.M.;Wu, Zhishen
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.379-388
    • /
    • 2018
  • This study aims to identify the effect of both longitudinal reinforcement details and damage level on making a decision of repairing pre-damaged bridge columns using basalt fiber reinforced polymer (BFRP) jackets. Two RC bridge columns with improper details of the longitudinal and/or transverse reinforcement were tested under the effect of a constant axial load and increasing lateral cyclic loading. Test results showed that the lap-splice column exhibited an inferior performance where it showed rapid degradation of strength before achieving the theoretical strength and its deformation capacity was limited; however, quick restoration is possible through a suitable rehabilitation technique. On the other hand, expensive repair or even complete replacement could be the decision for the column with the confinement failure mode. After that, a rehabilitation technique using external BFRP jacket was adopted. Performance-based design details guaranteeing the enhancement in the inelastic performance of both damaged columns were addressed and defined. Test results of the repaired columns confirmed that both reparability and the required repairing time of damage structures are dependent on the reinforcement details at the plastic hinge zone. Furthermore, lap-splice of longitudinal reinforcement could be applied as a key design-tool controlling reparability and restorability of RC structures after massive actions.

Mechanical behavior of FRP confined steel tubular columns under impact

  • Liu, Qiangqiang;Zhou, Ding;Wang, Jun;Liu, Weiqing
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.691-702
    • /
    • 2018
  • This paper presents experimental and analytical results of fiber reinforced polymer (FRP) confined steel tubular columns under transverse impact loads. Influences of applied impact energy, thickness of FRP jacket and impact position were discussed in detail, and then the impact responses of FRP confined steel tubes were compared with bare steel tubes. The test results revealed that the FRP jacket contributes to prevent outward buckling deformation of steel at the clamped end and inward buckling of steel at the impact position. For the given applied impact energy, specimens wrapped with one layer and three layers of FRP have the lower peak impact loads than those of the bare steel tubes, whereas specimens wrapped with five layers of FRP exhibit the higher peak impact loads. All the FRP confined steel tubular specimens displayed a longer duration time than the bare steel tubes under the same magnitude of impact energy, and the specimen wrapped with one layer of FRP had the longest duration time. In addition, increasing the applied impact energy leads to the increase of peak impact load and duration time, whereas increasing the distance of impact position from the clamped end results in the decrease of peak impact load and the increase of duration time. The dynamic analysis software Abaqus Explicit was used to simulate the mechanical behavior of FRP confined steel tubular columns, and the numerical results agreed well with the test data. Analytical solution for lateral displacement of an equivalent cantilever beam model subjected to impact load was derived out. Comparison of analytical and experimental results shows that the maximum displacement can be precisely predicted by the present theoretical model.