• 제목/요약/키워드: Fiber-reinforced cementitious composites

검색결과 154건 처리시간 0.025초

탄소섬유 FRP판과 현장타설 고인성섬유보강콘크리트 사이의 단순 부착슬립 관계 (Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC)

  • 유준상;유승운
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.25-31
    • /
    • 2016
  • Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system.

유·무기섬유 혼입비 및 혼입율 변화에 따른 HPFRCC의 기초물성 변화 (Changing Fundamental Properties of HPFRCC Depending on Combination and Content of Organic and Inorganic Fibers)

  • 이제현;문병룡;박용준;조성준;김종;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.28-29
    • /
    • 2016
  • Recently, the attention on high tensile, and high performance cementitious composite (HPFRCC) which can minimize the damage from explosion of inflammable gas and chemicals has been increased. In spite of outstanding tensile performance, HPFRCC has the drawbacks of fiber ball, undesirable cost, and high autogenous shrinkage. therefore, in this research, to develop the optimum HPFRCC, the fundamental properties and autogenous shrinkage of HPFRCC was analyzed depending on various combination and content of organic and inorganic fibers.

  • PDF

Increasing the flexural capacity of RC beams using partially HPFRCC layers

  • Hemmati, Ali;Kheyroddin, Ali;Sharbatdar, Mohammad K.
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.545-568
    • /
    • 2015
  • High Performance Fiber Reinforced Cementitious Composites which are called HPFRCC, include cement matrices with strain hardening response under tension loading. In these composites, the cement mortar with fine aggregates, is reinforced by continuous or random distributed fibers and could be used for various applications including structural fuses and retrofitting of reinforced concrete members etc. In this paper, mechanical properties of HPFRCC materials are reviewed briefly. Moreover, a reinforced concrete beam (experimentally tested by Maalej et al.) is chosen and in different specimens, lower or upper or both parts of that beam are replaced with HPFRCC layers. After modeling of specimens in ABAQUS and calibration of those, mechanical properties of these specimens are investigated with different thicknesses, tensile strengths, tensile strains and compressive bars. Analytical results which are obtained by nonlinear finite analyses show that using HPFRCC layers with different parameters, increase loading capacity and ultimate displacement of these beams compare to RC specimens.

고성능 섬유 보강 시멘트 복합체(HPFRCC)를 적용한 세장한 연결보의 내진거동 평가 (Seismic Behavior of Slender Coupling Beams Constructed with High-Performance Fiber Reinforced Cementitious Composite)

  • 한상환;권현욱;신명수;이기학;조영욱
    • 한국지진공학회논문집
    • /
    • 제17권6호
    • /
    • pp.271-278
    • /
    • 2013
  • The hysteretic behavior of diagonal reinforced coupling beams is excellent during earthquakes. However, construction of the diagonal reinforced coupling beams is difficult due to complex reinforcement details required by current code procedures (ACI 318-11). Due to the detail requirement, reinforcement congestion and interference among transverse reinforcement always occur during construction field. When the aspect ratio of the beam is large, the interference of reinforcement becomes more serious. The objective of this paper is to simplify the reinforcement details of slender coupling beams by reducing transverse reinforcement around the beam perimeter. For this purpose, high- performance fiber reinforced cementitious composites are used for making coupling beams. Experiments were conducted using three specimens having aspect ratio 3.5. Test results showed that HPFRCC coupling beams with half the transverse reinforcement required by ACI 318-11 provided identical seismic capacities to the corresponding coupling beams having requirement satisfying the requirement specified in ACI 318-11.

분산방법에 따른 CNT를 혼입한 섬유보강 시멘트복합체의 유동성 평가 (Table Flow Evaluation of CNT-Mixed Fiber Reinforced Cement Composite by Dispersion Method)

  • 김문규;김규용;편수정;최병철;박준영;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.95-96
    • /
    • 2023
  • In this study, the table flow of fiber reinforced cement composites mixed with CNTs dispersed differently according to the dispersion method was evaluated. The mixture was composed of plain mixture according to the presence or absence of ultrasonic dispersion and PCE-based dispersants A and B of 0.5% and 1.0%, respectively, CNT was mixed with 0.03% of cement weight and fiber was mixed with 1.5% of total volume. As a result of the experiment, NC-A0.5 showed a fluidity similar to that of P without CNT. The fluidity of NC-A0.5 and P-N showed a similar tendency, which is considered to be due to the distribution of evenly dispersed CNT particles without agglomeration between cement particles due to the dispersant. NC-B0.5 showed a similar level of firmness to P-U, but after hitting 250 mm, B Agent seems to have a significant effect on liquidity improvement.Both NC-A1.0 and NC-B1.0 seem to have increased flow due to excessive dispersion.

  • PDF

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

  • Kang, Su-Tae;Lee, Kang-Seok;Choi, Jeong-Il;Lee, Yun;Felekoglu, Burak;Lee, Bang Yeon
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.33-41
    • /
    • 2016
  • Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental study on the tensile behavior, including tensile ductility and crack patterns, of UHPC reinforced by hybrid steel and polyethylene fibers and incorporating plastic beads which have a very weak bond with a cementitious matrix. These beads behave as an artificial flaw under tensile loading. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the tensile behavior including tensile strain capacity and cracking pattern of UHPC investigated in this study can be controlled by fiber hybridization and artificial flaws.

섬유보강 시멘트 복합재료용 충격 시험장치 (Innovative impact apparatus for fiber reinforced cement composites)

  • 김동주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.403-404
    • /
    • 2010
  • 본 논문에서는 큰 시험체 크기와 많은 충격에너지를 필요로 하는 섬유보강 시멘트 복합재료의 충격 실험을 수행하기 위한 새로운 종류의 충격시험 장비를 제안하였다. 제안한 충격시험장치는 위치에너지나 운동에너지를 사용하는 기존 충격시험와 달리 선형변형에너지를 사용하고, 기존의 다른 충격시험장비와 비교하여 크기가 훨씬 작고 경제적이며 안전하다.

  • PDF

시험체 형상이 고인성시멘트복합체 인장거동에 미치는 영향 (Influence of Specimen Shapes on Tensile Behaviors of High Performance Fiber Reinforced Cement Composites)

  • 양일승;윤현도;한병찬;신홍철;박완신;김선우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.65-68
    • /
    • 2005
  • Social requirements to the civil and building structures have been changed in accordance with the social and economic progress. It is very important to develop the innovative structural materials and tecnology that the social requirements appropriately. Ductility of High Performance Fiber Reinforced cementitious Composites (HPFRCC), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress are drastically improved. Because ductility in tensile test are very different according to specimen shapes, three types of the direct tensile test are performed. The tensile test are performed using the tensile test specimen, dummbell-shaped specimen, and cylinder specimen. As a result, tensile performance in HPFRCC is very good comparing to cylinder specimen because of direction characteristics of fibers. It is necessary to clarify the examination method of suiting to the usage.

  • PDF

고인성 섬유보강 시멘트 복합체를 사용한 내진요소의 구조성능 (The Structural Behavior of Seismic Devices using High Performance Fiber Reinforced Cement Composites)

  • 양일승;윤현도;한병찬;박완신;김선우;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.21-24
    • /
    • 2004
  • Structural performance of the seismic devices made by steel bar and high performance fiber reinforced cement composites(HPFRCCs) was experimentally observed. These dampers will be applied for reducing damage as well as seismic response. The advantages of the HPFRCCs damper is selective structural performance, strength, stiffness, and ductility by changing configuration, bar arrangements and type of materials used. The experimental results indicate that elemental ductility is much increased with decreasing damage when the HPFRCCs are applied to the damper. It means cementitious damper for structural control is available which has much merit in performance and cost.

  • PDF

보강재에 따른 방호패널의 에너지 소산능력에 대한 실험적 연구 (An Experimental Study on Energy Dissipation Capacity of protection according to the reinforcement panel)

  • 이예찬;김규용;석원균;최병철;사수이;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.113-114
    • /
    • 2022
  • The purpose of this study is to identify the rear energy transfer amount and time delay capability of the protection panel that has been impated by a projectile and the protection panel reinforced the foam polypropylene on the rear of the fiber reinforced cement itious composites, and compared and analyzed the load resistance capacity, energy dissipation capacity, and impact delay capacity when dynamic extreme load were applied to the specimen.

  • PDF