• Title/Summary/Keyword: Fiber-reinforced cementitious composites

Search Result 154, Processing Time 0.024 seconds

Shotcrete-Retrofit of Shear Walls with an Opening (개구부를 가지는 전단벽의 숏크리트 보강)

  • Choi, Youn-Cheul;Choi, Chang-Sik;Kim, Hyun-Min;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.71-80
    • /
    • 2007
  • Because of the characteristics relating to high tensile ductility, High Performance Fiber Reinforced Cementitious Composites (HPFRCC) are studied to be adopted in repair and retrofit of buildings. A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening. The retrofit involved the use of newly developed ECC and MDF(Macro Defect Free), both of which are sprayed through the high pressure pump, over the entire face of the wall. The results indicate that two difference types of retrofitting strategy make the different effects of a rise in the strength and ductility of each specimen.

An Experimental Study on the Period of Cold Joint Occurrence Effecting Shear Bond Performances of UHSCC (콜드조인트 발생시간이 초고강도 섬유보강 시멘트 복합체의 전단 접착 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Min-Seong;Yang, Hyun-Min;Lee, Han-Seung;Cho, Keun-hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is to evaluate the performance on the compressive bonding shear strength of ultra-high strength steel fiber reinforced cementitous composites(UHSCC). As a result of compressive bonding shear strength through Direct shear test, It was found that the specimen($150{\times}150{\times}150mm$) of NC(Normal concrete) + NC showed similar compressive bonding shear strength at whole experimental level. On the other hand, the specimen of UHSCC + UHSCC showed decrease of compressive bonding shear strength from after 30 minutes of the retarded placement than 0 minute. As a result of analyzing failure mode of bonding interface, It was found that the specimen of NC + NC showed mixed failure at whole experimental level. In case of the specimen of UHSCC + UHSCC, it showed interface failure from the specimen that are 30 minutes, 60 minutes and 90 minutes of delay of concrete placing. As a result of analyzing XRD test in terms of the placement interface on the specimen of NC and UHSCC, relatively much amount of $SiO_2$ was detected from the specimen of UHSCC than that of NC. It is judged that the most of main components of coating film shown in the specimen of UHSCC is $SiO_2$. In conclusion, it is judged that UHSCC which is made from after 30 minutes of delay of concrete placing is unable to be used as structural member because of deterioration of bonding performance. From later study, it is judged that the improvement of bonding performance from the part of cold joint occurrence is necessary through the interface preparation method.

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.

Effect of Different Energy Frames on the Impact Velocity of Strain Energy Frame Impact Machine (에너지 프레임 종류에 따른 변형에너지 프레임 충격시험장치의 충격속도)

  • PARK, Seung Hun;PARK, Jun Kil;TRAN, Tuan Kiet;KIM, Dong Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.363-375
    • /
    • 2015
  • This research investigated the effects of diameter and material of energy frame on the impact velocity or strain rate of Strain Energy Frame Impact Machine (SEFIM). The impact speed of SEFIM have been clearly affected by changing the diameter and material of the energy frame. The reduced diameter of the energy frame clearly increased the impact velocity owing to the higher strain at the moment of coupler breakage. And, titanium alloy energy frame produced the fastest speed of impact among three materials including steel, aluminum and titanium alloys because titanium alloy has faster wave velocity than steel. But, aluminium energy frame was broken during impact tests. In addition, the tensile stress versus strain response of high performance fiber reinforced cementitious composites at higher and wider strain rates between 10 and 72 /sec was successfully obtained by using four different energy frames.