• Title/Summary/Keyword: Fiber-reinforced

Search Result 4,416, Processing Time 0.04 seconds

Multiple Polyamide Fiber Reinforced Shotcrete for Railway Tunnel Structure (철도 터널 구조물 시공을 위한 다발형 폴리아미드섬유 보강 숏크리트)

  • Jeon, Joong-Kyu;Chung, Jae-Min;Yoon, Ji-Hyun;Jeon, Chan-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1214-1219
    • /
    • 2011
  • Fiber reinforced shotcrete began to be used in tunnel constructions because it facilitates and expedites the construction process, and improves reinforcement properties. As one of the most widely used forms of shotcrete used in tunneling, steel fiber reinforced shotcrete offers excellent strength and ductility and allows quick reinforcement. However, steel fibers tend to lump together in cement matrix, and low levels of water and acid resistance cause corrosion in steel fiber, resulting in cracks and delamination. In particular, rebound and backlash of steel fiber is significantly increased during steel fiber reinforced shotcrete construction, compromising the flexural toughness and quality of shotcrete. In order to resolve the problems associated with steel fiber reinforced shotcrete and improve the application, durability, and cost-effectiveness of shotcrete, this paper proposes methods for manufacturing and constructing tunnels with multiple polyamide fiber reinforced shotcrete. We performed experiments to evaluate the performance of the proposed shotcrete, and the experimental results indicate that the multiple polyamide fiber reinforced shotcrete proposed in this paper offers outstanding performance that meets various construction design criteria.

  • PDF

Strengthening Efficiency of Ring Type Steel Fibers in Concrete Panels (콘크리트 패널 내 원형 강섬유의 보강 효율성)

  • 조원택;이차돈;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.327-332
    • /
    • 2001
  • It is generally observed that steel fiber reinforced concrete with traditional straight steel fibers overcomes brittle nature of plain concrete by failure mechanisms by fiber pull-out rather than fiber rupture resulting from fiber yielding or concrete fracture at failured surface. Ring type steel fibers in concrete which is confined in concrete matrix and has better orientation, thus, lead to fiber yielding and concrete fracture as well as increase of flexural behavior of concrete more efficiently, Comparative experimental study is performed in order to measure the relative efficiencies of steel fiber reinforced concrete reinforced with two different fibers. It is found that better toughness is obtained from the ring type steel fiber reinforced concrete than from straight steel fiber reinforced concrete under flexural loading.

  • PDF

Cracking of Fiber-Reinforced Self-Compacting Concrete due to Restrained Shrinkage

  • Kwon, Seung-Hee;Ferron, Raissa P.;Akkaya, Yilmaz;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • Fiber-reinforced self-compacting concrete (FRSCC) is a new type of concrete mix that can mitigate two opposing weaknesses: poor workability in fiber-reinforced concrete and cracking resistance in plain SCC concrete. This study focused on early-age cracking of FRSCC due to restrained drying shrinkage, one of the most common causes of cracking. In order to investigate the effect of fiber on shrinkage cracking of FRSCC, ring shrinkage tests were performed for polypropylene and steel fiber-reinforced SCC. In addition, finite element analyses for those specimens were carried out considering drying shrinkage based on moisture diffusion, creep, cracking resistance of concrete, and the effect of fiber. The analysis results were verified via a comparison between the measured and calculated crack width. From the test and analysis results, the effectiveness of fiber with respect to reducing cracking was confirmed and some salient features on the shrinkage cracking of FRSCC were obtained.

Characteristics of Compaction and Stregth for Synthetic Fiber Reinforced Soils (섬유 보강토의 다짐 및 강도 특성)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.93-98
    • /
    • 1999
  • The results of an experimental investigation on the characteristics of compaction and compressive strength of polypropylene fiber reinforced soil are presented in this paper. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$dmax (maximum dry unit weight), with four different contents (i.e., 0.1%, 0.3%, 0.5% and 1.0% weights ) of mono-filament and fibrillated polypropylene fibers. From the compaction test results, it is found that OMC increased with the contents ratio of fiber, but ${\gamma}$dmax decreased. It means that the improvement of the workability and the reduction of the weight of embankment structures by the asddtion of the polypropylene fiber. And, from the compression test results, it is found that the additon of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil is more effective than the mono-filament polypropylene fiber reinforced soil.

  • PDF

Analysis of Failure Reduction Properties Cementitious Composites with Reinforced Fiber by Impact of High Velocity Projectile (비상체의 고속 충격을 받는 시멘트복합체의 혼입 단섬유에 따른 파괴저감특성 분석)

  • Jeon, In-Woo;Kim, Gyu-Yong;Cheo, Gyeong-Cheol;Kim, Hong-Seop;Kim, Jung-Hyun;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.186-187
    • /
    • 2014
  • Flexural stress and fracture energy of fiber reinforced cementitious composites is increased by bridge effect of reinforced fiber, scabbing failure is restrained. Shape, properties of fiber were SF(steel fiber), PA(polyamide), NY(nylon) have effects on flexural stress and fracture energy, impact resistance improve of fiber reinforced cementitious composites. In this study, local failure properties by impact of high velocity projectile was analyzed by mixing 3 types of fiber which have different shape and properties respectively.

  • PDF

An Experimental Study on the Mechanical Properties and Rebound Ratios of SFRS with Silica Fume

  • Son, Young-Hyun;Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2009
  • In this study, an experiment in the field was performed to analyze the mechanical properties and the influence of steel fiber and silica fume on the rebound ratios of shotcrete. The experimental parameters which are the reinforcing methods (steel fiber, wire mesh), steel fiber contents (0.0%, 0.5%, 0.75%, 1.0%), silica fume contents (0.0%, 10.0%), layer thickness (60 mm, 80 mm, 100 mm), and the placing parts (sidewall, shoulder, crown) were chosen. From the mechanical test, it was found that the flexural strength and toughness is significantly improved by the steel fiber and/or silica fume. According to the results for the side wall in this test, the larger the fiber contents are in case of steel fiber reinforced shotcrete, the less the rebound ratios are within the range of 20-35%, compared to the wire mesh reinforced shotcrte. And also, the reduced rebound ratios were very larger in using steel fiber reinforced shotcrete with silica fume content of 10%, and these results are true of the shoulder and the crown. respectively.

Effects of Short-fiber End Shape on Tensile Properties of Reinforced Rubber (단섬유 끝 형상이 강화고무의 인장 특성에 미치는 영향)

  • Ryu, Sang-Ryeol;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.1023-1030
    • /
    • 2001
  • The tensile properties of short nylon6 fiber reinforced NR and SBR have been investigated as functions of diameter ratio(DR), interphase condition, fiber aspect ratio(AR), and fiber content. The short-fiber(DR=3 and AR=2) reinforced SBR did not show the dilution effect for all interphase conditions. And the short-fiber(DR=3 and AR=2) reinforced NR did not show the dilution effect except for the no-coating. The better interphase condition, the lower dilution effect at same DR. The tensile moduli are significantly improved due to fiber content and diameter ratio at same interphase condition. The pull-out force increased with the DR. The better interphase condition, the higher pull-out force at same DR. It is found that the DR and AR have an important effect on tensile properties.

The Roles of Reinforcing Fibers on the Performance of Automotive Brake Pads (자동차용 마찰재의 성능에 미치는 강화섬유의 역할)

  • Lim, Hyun-Woo;Yoon, Ho-Gyu;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.173-179
    • /
    • 2000
  • The friction and wear characteristics of brake friction materials reinforced with aramid fiber, carbon fiber, glass fiber, and potassium titanate whiskers were investigated using a pad-on-disk type friction tester. In particular, the morphology of rubbing surfaces was carefully investigated to correlate the friction performance and properties of transfer films. The aramid fiber reinforced specimen showed severe oscillation of friction coefficient at low speed and low applied pressure. The carbon fiber reinforced specimen showing better friction stability exhibited uniform and stable transfer film than any other specimens. The glass fiber reinforced specimen showed unstable friction changes at high speed and high-applied pressure and the non-uniform transfer film was observed in both friction material and rotor surface. The potassium titanate whiskers reinforced specimen showed stable coherent transfer film. The wear test exhibited the potassium titanate whiskers reinforced specimen was lowest in wear amount and glass fiber reinforced specimen showed the severe wear.

  • PDF

Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

  • Im, So-Min;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.22-30
    • /
    • 2017
  • PURPOSE. The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

Experimental Study on the Mechanical Properties of CF Reinforced Fly Ash-Cement Composites(I) (탄소섬유 보강 플라이 애쉬-시멘트 복합재의 역학적 특성에 관한 실험적 연구(I))

  • 박승범;윤의식;송용순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.11-15
    • /
    • 1990
  • Results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced fly ash-cement composites are presented in this paper. The carbon fiber reinforced fly ash-cement composites using silica powder and a small amount of Ethylene vinyl acetate emulsion are prepared with carbon fiber, foaming agents and curing conditions. As a result, the manufacturing process technology of carbon fiber reinforced fly ash-cement composites is developed. And the mechanical properties such as compressive, tensile and flexural strengths and drying shrinkage of lightweight carbon fiber reinforced fly ash-cement composites are improved by using a small amount of Ethylene vinyle acetate emulsion. The development and applications of precast products and the design systems of lightweight carbon fiber reinforced fly ash-cement composites are expected in the near future.

  • PDF