• 제목/요약/키워드: Fiber-optic temperature sensor

검색결과 123건 처리시간 0.026초

저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계 (The RLG's Power Supply Design for Attitude Control in the Satellite)

  • 김의찬;이흥호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

In vivo verification of regional hyperthermia in the liver

  • Noh, Jae Myoung;Kim, Hye Young;Park, Hee Chul;Lee, So Hyang;Kim, Young-Sun;Hong, Saet-Byul;Park, Ji Hyun;Jung, Sang Hoon;Han, Youngyih
    • Radiation Oncology Journal
    • /
    • 제32권4호
    • /
    • pp.256-261
    • /
    • 2014
  • Purpose: We performed invasive thermometry to verify the elevation of local temperature in the liver during hyperthermia. Materials and Methods: Three 40-kg pigs were used for the experiments. Under general anesthesia with ultrasonography guidance, two glass fiber-optic sensors were placed in the liver, and one was placed in the peritoneal cavity in front of the liver. Another sensor was placed on the skin surface to assess superficial cooling. Six sessions of hyperthermia were delivered using the Celsius TCS electro-hyperthermia system. The energy delivered was increased from 240 kJ to 507 kJ during the 60-minute sessions. The inter-session cooling periods were at least 30 minutes. The temperature was recorded every 5 minutes by the four sensors during hyperthermia, and the increased temperatures recorded during the consecutive sessions were analyzed. Results: As the animals were anesthetized, the baseline temperature at the start of each session decreased by $1.3^{\circ}C$ to $2.8^{\circ}C$ (median, $2.1^{\circ}C$). The mean increases in temperature measured by the intrahepatic sensors were $2.42^{\circ}C$ (95% confidence interval [CI], 1.70-3.13) and $2.67^{\circ}C$ (95% CI, 2.05-3.28) during the fifth and sixth sessions, respectively. The corresponding values for the intraperitoneal sensor were $2.10^{\circ}C$ (95% CI, 0.71-3.49) and $2.87^{\circ}C$ (1.13-4.43), respectively. Conversely, the skin temperature was not increased but rather decreased according to application of the cooling system. Conclusion: We observed mean $2.67^{\circ}C$ and $2.87^{\circ}C$ increases in temperature at the liver and peritoneal cavity, respectively, during hyperthermia. In vivo real-time thermometry is useful for directly measuring internal temperature during hyperthermia.

광섬유 FBG 센서기반 성형 모니터링을 통한 철도 차량용 복합재 내장재 패널의 성형 품질 평가 (Molding Quality Evaluation on Composite Laminate Panel for Railway Vehicle through Cure Monitoring using FBG Sensors)

  • 박주엽;강동훈
    • Composites Research
    • /
    • 제36권3호
    • /
    • pp.186-192
    • /
    • 2023
  • 최근, 철도차량 분야에서는 경량화 및 운송 효율화를 위해 복합재 활용에 대한 관심이 높아지고 있다. 이에 따라 다양한 차량 부품에 복합재를 적용하고자 하는 연구 및 상용화 개발이 활발히 이루어지고 있으며, 복합재 적용에 대한 품질 검증을 위해 완성품의 기계적 성능 평가와 같은 사후 측정을 중심으로 평가가 이루어지고 있다. 하지만, 제작 품질에 큰 영향을 미치는 요소인 복합재 성형 과정에서 발생하는 열과 응력에 대한 분석은 미비한 상황이다. 따라서, 본 연구에서는 철도차량용 복합재 부품의 성형 품질을 검증하기 위하여 가장 활발히 사용되는 복합재 내장재 패널 2종(라미네이트 패널, 샌드위치 패널)에 대한 성형 품질 분석을 진행하였다. 이를 위해 복합재 내부 적용에 용이한 FBG 광섬유 센서를 이용하여 성형 과정 동안 온도 및 변형률 변화를 모니터링 하고, 성형 완료 후 발생하는 잔류 변형률 값을 측정하였다. 결과적으로, 과열 현상과 과도 잔류응력이 발생하지 않은 것을 확인함으로써 철도차량용 복합재 내장재 패널의 우수한 성형 품질을 검증하였다.