• Title/Summary/Keyword: Fiber-Optic

Search Result 1,082, Processing Time 0.03 seconds

Measurement and removal of a cerenkov light in a plastic optical fiber to detect a scintillating light (섬광검출을 위한 플라스틱광섬유에서의 체렌코프 빛 측정 및 제거)

  • Cho, Dong-Hyun;Jang, Kyoung-Won;Yoo, Wook-Jae;Shin, Sang-Hun;Lee, Bong-So;Park, Byung-Gi;Cho, Hyo-Sung;Kim, Sin
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.100-105
    • /
    • 2008
  • The objectives of this study are to measure and to remove Cerenkov lights generated in a fiber-optic radiation sensor by a charge-coupled device. we have fabricated a fiber-optic radiation sensor which comprises an organic scintillator, a plastic optical fiber and a charge-coupled device. Charge-coupled device as a light measuring tool has many advantages which are easy in multi-dimensional measurements, high spatial resolution and relatively low cost.

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

Fiber-Optic Sensor Simultaneously Detecting Localized Surface Plasmon Resonance and Surface-Enhanced Raman Scattering

  • Norov, Erdene;Jeong, Hyeon-Ho;Park, Jae-Hyoung;Lee, Seung-Ki;Jeong, Dae Hong
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.46-51
    • /
    • 2013
  • This study reports a fiber-optic sensor detecting biomolecule by simultaneously monitoring localized surface plasmon resonance (LSPR) from gold nanoparticles (Au NPs) of ca. $50{\pm}5$ nm attached on one end of optical fiber and surface enhanced Raman scattering (SERS) of the reporter molecules adsorbed on the gold surfaces as an additional sensing tool. The sensor was fabricated by immobilizing Au NPs on one end of an optical fiber by chemical reaction. LSPR and SERS signals of the sensor were measured using various refractive indices solutions. Finally, the sensor was applied to observe real-time LSPR sensor-gram and SERS spectra of the reporter molecule of 4-aminothiphenol during the antibody-antigen reaction of interferon-gamma (IFN-${\gamma}$) as a proof-concept experiment of biological applications.

Distributed Fiber-Optic Temperature Sensor Network for Protection of Electric Power Systems (전력설비 보호를 위한 분배형 광섬유 온도센서)

  • Park, Hyoung-Jun;Lee, June-Ho;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.64-71
    • /
    • 2006
  • We developed a fiber-optic temperature sensor system, with 10 fiber Bragg gratings, for abnormal high-temperature monitoring in power systems. We used Gaussian line-fitting algorithm to compensate the spectrum distortion in the wavelength-scanned Farby-Perot filter demodulation scheme. Compared with highest-peak-detection method, the proposed algorithm substantially reduced measurement errors. The overall measurement error was less than 1[%] compared with the reference thermocouple and the linearity error was 0.37[%].

An Experimental Study on the Tappet Spin for a Direct Acting Valve Train System (직접 구동형 밸브 트레인 시스템의 태핏 회전에 관한 실험적 연구)

  • Cho, Myung-Rae;Kim, Hyung-Jun;Moon, Tae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1179-1184
    • /
    • 2003
  • The technique for measuring the rotational speed of tappet in direct acting type valve train system has been developed. The optic signal monitoring system with laser and optic fiber was designed to follow the signal of tappet rotation. The system was based on ON/OFF signal generation from the additional encoder teeth under the tappet with optic fibers attached photo transistor. The data showed that tappet rotation was affected by offset, oil temperature and cam shaft operating speed. Also it was found that tappet rotation increases with oil temperature. Tappet spin was delayed 10∼s20$^{\circ}$ cam angle after valve opening. The instantaneous rotational speed of tappet was reciprocal to cam shaft speed and the tappet and the cam angle ratio was located in the range of 0.1∼0.3.

Polarization-independent temperature sensor using cladding layers of the overlay waveguide coupled with a side-polished fiber (측면 연마 광섬유와 결합된 상부 도파로의 클래딩을 이용한 편광 무의존 온도센서)

  • 손경락;김광택;송재원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.467-472
    • /
    • 2002
  • In this paper, we propose a polarization-insensitive temperature sensor using a thermo-optic effect of the upper and (or) lower cladding of a planar waveguide in contact with a side-polished fiber. A microscope cover glass with thickness of a 170 ${\mu}{\textrm}{m}$ is adopted as an overlay waveguide because this waveguide opposes sudden temperature change and ensures polarization-insensitive responses. The measured polarization-dependence loss is less than 0.3 dB. The temperature can be detected as a result of the shift in coupling wavelength of the sensor. We investigate the shift in coupling wavelength as a function of the temperature variation with respect to the different thermo-optic coefficients of lower and upper claddings. We also show that the temperature sensitivity of the device can be easily controlled by the thermo-optic coefficients of lower and upper claddings of the overlay waveguide.

Investigation of Sound Pressure Detection of Fiber Optic Sensor in Transformer Oil According to TLS and CW Laser Source (TLS와 CW 광원에 따른 트랜스포머 오일 내에서 광섬유 센서의 음압 감지 특성 연구)

  • Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • To substitute TLS in the hybrid system which is combined with Sagnac interferometer and fiber bragg grating (FBG) it is necessary to investigate how the laser source (TLS and CW) and sensor material variate the response of fiber optic sensor. Two different hollow cylinder type mandrel materials are proposed which are PTFE and PTFE+carbon and 18 m optical fiber is wounded at the mandrel surface. CW laser source experiments had been done in the oil tank which is filled with transformer oil in the 1 kHz~20 kHz frequency range. Also Sagnac interferometer fiber optic sensor is combined with FBG called hybrid system and TLS used as a light source. Based on the experimental results PTFE sensor showed more higher magnitude of detection signal rather than carbon sensor and this result is agreement with the McMahon's theoretical results. Phase variation is inversely proportional to the elastic modulus of the mandrel material. In PTFE fiber sensor, tunable laser source showed more higher performance rather than CW case. Therefore, TLS fiber optic sensor can be applied to the hybrid system which is combined with Sagnac and FBG.

Fiber Laser based Fiber Bragg Grating Strain Sensor (광섬유 레이저를 이용한 광섬유격자 스트레인 센서)

  • Kim, Jong-Seop;Park, Hyoung-Jun;Song, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1936-1938
    • /
    • 2002
  • A tunable fiber laser and the Quadrature Sampling technique are used to construct highly sensitive fiber-optic distributive Bragg grating strain sensor system. By using a wavelength-modulated fiber laser, the variations of strain-dependent Bragg wavelengths are transformed into the variations of time-domain reflection profiles. The locations of profile peaks that correspond to the applied strains are demodulated using a precise wavelength encoder that uses a fiber-optic Mach-Zehnder interferometer and Quadrature Sampling technique. With the extremely high sensitive optical encoder, we could obtain not only high sensitivity, but also very linear responses that was impossible with the conventional techniques. This paper is attempted to report the theoretical and experimental results.

  • PDF

Novel Raman Fiber Laser and Fiber-Optic Sensors Using Multi-Channel Fiber Gratings

  • Han, Young-Geun;Kim, Sang-Hyuck;Lee, Sang-Bae;Kim, Chang-Seok;Kang, Jin-U.;Paek, Un-Chul;Chung, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • The transmission characteristics of multi-channel long period fiber gratings (LPFGs) in terms of the physical parameters like the separation distance, grating length and number of gratings will be discussed. Their transmission characteristics such as channel spacing, number of channels, loss peak depth, and channel bandwidth can be easily controlled by physical parameters. Based on the experimental results, their applications to optical multiwavelength Raman lasers and optical sensors will be investigated. A multiwavelength Raman fiber ring laser with 9 WDM channels with 100 ㎓ spacing and 19 channels with 50 ㎓ spacing using tunable multi-channel LPFGs will be experimentally demonstrated. The fiber-optic sensing applications with high resolution and sensitivity based on multi-channel LPFGs will be also presented.

An Study on Effective Maintenance and Operation System of Fiber Optic Lines (효과적인 광선로 유지 보수를 위한 시스템 개발에 관한 연구)

  • Jang, Eun-Sang;Park, Kap-Seok;Kim, Seong-Il;Choi, Sin-Ho;Lee, Byeong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.54-57
    • /
    • 1998
  • As the physical layer on telecommunication network is replaced fiber optic lines, it is increased the need of systematic maintenance for fiber optic lines. Korea Telecom has developed FLOMS in order to establish maintenance processes for optical fiber lines. FLOMS has functions which manages optical facilities and tests optical fiber lines automatically. As a resuls, this system can check and/or report a fault. Operator, who is reponsible for management of optical fiber lines, can test the characteristics of optical fiber lines remotely using FLOMS. As interpoerable with Digital Transmission Management System, FLOMS provides efficient management for optical fiber lines. This system improves the work process to find fault location fast, detect the degradation of fiber quality, and make database of optical facilities efficiently.

  • PDF