• 제목/요약/키워드: Fiber-Matrix Debonding

검색결과 63건 처리시간 0.023초

폴리케톤 섬유의 산소 플라즈마 처리에 따른 천연고무와의 계면접착 특성 (Interfacial Adhesion Properties of Oxygen Plasma Treated Polyketone Fiber with Natural Rubber)

  • 원종성;최혜영;유재정;최한나;용다경;이승구
    • 접착 및 계면
    • /
    • 제13권1호
    • /
    • pp.45-50
    • /
    • 2012
  • 폴리케톤(polyketone, PK) 섬유는 고무의 강화재로 사용하기 위해서 최근 개발되고 있는 소재이다. 섬유의 고무와의 접착성을 향상시키기 위하여 플라즈마로 표면을 개질하였다. 산소 플라즈마 처리에 의한 섬유표면의 물리적 형태변화를 관찰하기 위하여 주사전자현미경과 원자현미경을 이용하여 관찰하였다. 섬유표면의 화학적 조성변화를 XPS (X-ray photoelectron spectroscopy)를 이용하여 알아보았다. 최종적으로 이러한 변화가 PK 섬유와 고무와의 계면접착력에 어떠한 영향을 미치는지를 microdroplet debonding 시험을 통해 분석하였다. 플라즈마 처리에 의하여 섬유표면에 산소함유기들이 증가하는 결과를 보였으며, 처리시간과 처리전력이 증가함에 따라 에칭에 의한 표면조도(RMS roughness)가 증가하였다. 그러나 장시간의 플라즈마 처리조건에서는 표면에 degradation이 발생하여 오히려 표면조도가 감소하는 결과를 보였다. PK 섬유와 고무와의 계면전단강도는 처리시간 60 s의 80 W, 처리전력 60 W의 180 s에서 처리한 경우에 최대 계면전단강도를 나타내었다. 그러나 그 이상으로 증가하면 degradation이 발생하면서 계면전단강도가 감소하였다.

CFRP 복합재료의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Carbon Fiber Reinforced Plastics)

  • 고성위;김학돌;엄윤성;최영근;김형진;김재동;김엄기
    • 수산해양기술연구
    • /
    • 제38권4호
    • /
    • pp.300-306
    • /
    • 2002
  • 장섬유 CF/에폭시 복합재료를 사용하여-5$0^{\circ}C$에서 6$0^{\circ}C$ 사이의 범위에서 스팬길이를 변화시켜 충격시험으로 얻어진 임계파괴에너지의 거동을 고찰한 결과는 다음과 같다. 1. CF/에폭시 복합재료의 온도 변화에 따른 임계파괴에너지 GIC는 동일한 스팬길에서는 실온의 경우가 가장 높고, 6$0^{\circ}C$, -15$^{\circ}C$ 그리고 -5$0^{\circ}C$의 순으로 낮게 나타났다. 2. CF/에폭시 복합재료의 스팬길이의 변화에 대한 임계 파괴에너지 GIC는 동일한 온도조건하에서는 스팬길이가 20mm인 경우가 가장 높게 나타났으나 불안정하며, 스팬길이는 40mm인 경우 임계파괴에너지 GIC는 가장 낮게 나타났으나 실험치의 흩어짐을 고려할 때 40mm인 경우의 시험편이 더 적절한 조건이라 생각된다. 3. 본 실험에 사용한 재료의 파괴기구는 섬유의 풀아웃, 섬유와 매트릭스 사이의 디본딩 그리고 매트릭스의 변형을 관찰할 수 있었으며, 이와 같은 파괴기가구 종합적으로 상호작용한다고 생각된다.

전기증착된 탄소섬유/에폭시 복합재료의 인장/압축 하중하에서의 전기저항 측정법을 이용한 경화 및 계면특성 (Curing Behavior and Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites by Electrical Resistivity Measurement under Tensile/Compressive Tests)

  • 박종만;이상일;김진원
    • 접착 및 계면
    • /
    • 제2권1호
    • /
    • pp.9-17
    • /
    • 2001
  • 전기저항 측정법과 인장 및 압축 시험을 이용하여, 탄소섬유/에폭시 복합재료의 정화특성과 계면물성을 평가하였다. 계면이 존재하지 않는 탄소섬유 자체만을 사용했을 경우에는 경화 초기와 최종단계의 저항차이는 없었으며, 계면이 존재하는 탄소섬유/에폭시 시편의 경우에는 매트릭스 경화 수축에 의해 저항차가 크게 나타났다. 인장 하충하의 저항 변화 측정에서, 전기증작된 시편은 섬유의 첫 파단에 의해 저항이 무한대로 도달하는 시간이 미처리에 비해 다소 지연되는 현상을 보였다. 인장 및 압축 시험에서 표면처리된 시연은 미처리섬유에 비해 계면전단 강도가 현저히 크게 증가하였다. 인장의 경우, 미처리 섬유에서는 debonding 형태, 그리고 표면처리된 섬유에서는 cone 형태의 판단이 관찰되었다. 압축에서는 부러진 섬유 끝에서 대각선으로 미끄러지는 파단 현상이 두 경우 모두에서 나타났는데, 미처리섬유는 창 끝과 같은 예리한 파단이 일어나며, 전기증착된 섬유는 다소 둔한 판단이 나타났다. 이를 통해 전기증착에 의한 표면처리가 계면접착력과 미세파괴구조에 인장 및 압축하에서 각각 다른 영향을 주는 것을 확인하였다.

  • PDF

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.

Comparative evaluation of effects of different surface treatment methods on bond strength between fiber post and composite core

  • Mosharraf, Ramin;Yazdi, Najmeh Baghaei
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권2호
    • /
    • pp.103-108
    • /
    • 2012
  • PURPOSE. Debonding of a composite resin core of the fiber post often occurs at the interface between these two materials. The aim of this study was to evaluate the effects of different surface treatment methods on bond strength between fiber posts and composite core. MATERIALS AND METHODS. Sixty-four fiber posts were picked in two groups (Hetco and Exacto). Each group was further divided into four subgroups using different surface treatments: 1) silanization; 2) sandblasting; 3) Treatment with 24% $H_2O_2$, and 4) no treatment (control group). A cylindrical plexiglass matrix was placed around the post and filled with the core resin composite. Specimens were stored in 5000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$. Tensile bond strength (TBS) test and evaluation using stereomicroscope were performed on the specimen and the data were analyzed using two-way ANOVA, Post Hoc Scheffe tests and Fisher's Exact Test (${\alpha}$=.05). RESULTS. There was a significant difference between the effect of different surface treatments on TBS ($P$ <.001) but different brands of post ($P$=.743) and interaction between the brand of post and surface treatment ($P$=.922) had no significant effect on TBS. Both silanization and sandblasting improved the bonding strength of fiber posts to composite resin core, but there were not any significant differences between these groups and control group. CONCLUSION. There was not any significant difference between two brands of fiber posts that had been used in this study. Although silanization and sandblasting can improve the TBS, there was not any significant differences between surface treatments used.

불균질입자강화 복합재료의 최적설계를 위한 손상메커니즘 해석 (Analysis of Damage Mechanism for Optimum Design in Discontinuously-Reinforced Composites)

  • 조영태;조의일
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.106-112
    • /
    • 2004
  • In particle or short-fiber reinforced composites, cracking or debonding of the reinforcements cause a significant damage mode because the damaged reinforcements lose load carrying capacity. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of discontinuously-reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

복합재료 Body Panel의 고온열화 특성 (Material Properties Degradation of Composite Body Panel Exposed to High Temperature)

  • 변현중;남현욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.219-224
    • /
    • 2000
  • A research for development of composite body panel is in progress for lightening tare. Low specific weight LPMC (Low pressure molding compound) has advantages such as lightweight and resistance to dent and corrosion. In this study, tensile, bending and impact tests for the LPMC and SPRC35 (High tension steel plate) were carried out and compared. Although mechanical properties of SPRC35 are better than the LPMC, the LPMC satisfies basic requirements for car body panel. The high temperature exposed LPMC were degraded due to fiber-matrix debonding and deterioration of resin.

  • PDF

Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites

  • Lim, Jae Il;Rhee, Kyong Yop;Kim, Hyun Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.125-128
    • /
    • 2014
  • In this study, the effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites was investigated. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. Fracture tests were conducted and the fracture surfaces of the carbon/basalt/epoxy hybrid composites were then examined using scanning electron microscopy (SEM). The results showed that the flexural strength and flexural modulus of the CSBC specimen respectively were ~32% and ~245% greater than those of the BSCC specimen. However, the interlaminar fracture toughness of the CSBC specimen was ~10% smaller than that of the BSCC specimen. SEM results on the fracture surface showed that matrix cracking is a dominant fracture mechanism for the CSBC specimen while interfacial debonding between fibers and epoxy resin is a dominant fracture process for the BSCC specimen.

Micromechanical 시험법과 AE를 이용한 PVDF 함침 고분자 복합재료의 계면손상감지능 및 비파괴적 평가 연구 (Nondestructive Evaluation and Interfacial Damage Sensing of PVDF embedded Polymer Composites using Micromechanical Techniques and Acoustic Emission)

  • Kong, Jin-Woo;Park, Joung-Man;Kim, Ki-Bok;Yoon, Dong-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.216-219
    • /
    • 2002
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) have been used use as a sensor. The advantages of PVDF are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. PVDF sensor can be directly embedded and attached to a structure. In this study, PVDF sensor was embedded in single glass fiber/epoxy composites whereas PZT sensor with AE was attached to single fiber composites (SFC). Piezoelectric sensor responds to interfacial damage of SFC. The signals measured by PVDF sensor were compared to PZT sensor. PZT sensor detected the signals of fiber fracture, matrix crack, interfacial debonding and even sensor delamination, whereas PVDF sensor only detected fiber fracture signals so far, because PZT sensor is much more sensitive than current PVDF sensor. Wave voltage of fiber fracture measured by PVDF sensor was lower than that of PZT sensor, but the results of fast Fourier transform (FFT) analysis were same. Wave velocity using two PZT sensors was also studied to know the internal and surface damage effect of epoxy specimens.

  • PDF