• Title/Summary/Keyword: Fiber-Bridging Modification Factor(${\beta}_{fb}$)

Search Result 2, Processing Time 0.013 seconds

The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates (반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.