• Title/Summary/Keyword: Fiber volume

Search Result 1,114, Processing Time 0.026 seconds

Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Kim, You-Chan;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.391-401
    • /
    • 2017
  • In this study, the effects of water-to-binder (W/B) ratio and replacement ratio of blast furnace slag (BFS) on the compressive strength of concrete were first investigated to determine an optimized mixture. Then, using the optimized high-strength concrete (HSC) mixture, hooked steel fibers with various aspect ratios and volume fractions were used as additives and the resulting mechanical properties under compression and flexure were evaluated. Test results indicated that replacement ratios of BFS from 50 to 60% were optimal in maximizing the compressive strength of steam-cured HSCs with various W/B ratios. The use of hooked steel fibers with the aspect ratio of 80 led to better mechanical performance under both compression and flexure than those with the aspect ratio of 65. By increasing the fiber aspect ratio from 65 to 80, the hooked steel fiber volume content could be reduced by 0.25% without any significant deterioration of energy absorption capacity. Lastly, complete material models of steel-fiber-reinforced HSCs were proposed for structural design from Lee's model and the RILEM TC 162-TDF recommendations.

Compressive and Flexural Behavior of High-Strength Concrete Incorporating Different Types of Hooked-End Steel Fibers (강섬유 특성에 따른 고강도 콘크리트의 압축 및 휨 거동)

  • Jeong, Woo-Jin;Jin, Ai-Hua;Yun, Hyun-Do
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • This paper investigates the effects of aspect ratio and volume fraction of hooked-end normal-strength steel fibers on the compressive and flexural properties of high-strength concrete with specified compressive strength of 60 MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were considered and three volume fractions of 0.25%, 0.50% and 0.75% for each steel fiber were respectively added into each high-strength concrete mixture. The test results indicated that the addition of normal-strength steel fibers is effective to improve compressive and flexural properties of high-strength concrete but fiber aspect ratio had little effect on the modulus of elasticity and compressive strength. As steel fiber content and aspect ratio increased, flexural beahvior of notched high-strength concrete beams was effectively improved.

Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers (갈고리형 강섬유를 혼입한 보통 및 고강도 콘크리트의 휨강도 평가)

  • Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.531-539
    • /
    • 2008
  • The purpose of this study is to investigate the mechanical properties of high strength concretes reinforced with hooked steel fiber. For this purpose, total 36 specimens whose variables are concrete compressive strength, steel fiber aspect ratio, and steel fiber volume contents, are made and tested. From the test results including previous research work, flexural performance of steel fiber reinforced high strength concrete is evaluated in terms of flexural strength and toughness index. Flexural behavior of steel fiber reinforced high strength concrete is enhanced with respect to the fiber volume content, the aspect ratio, and concrete compressive strength. More efforts are devoted to evaluate quantitatively between the flexural strength and the structural parameters such as the fiber volume content, the aspect ratio, and concrete compressive strength.

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Effects of Anisotropic Fiber Packing on Stresses in Composites (이방성 섬유의 배열이 복합재료의 응력에 미치는 영향)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1284-1296
    • /
    • 2004
  • In order to investigate effects of anisotropic fiber packing on stresses in composites, a Volume Integral Equation Method is applied to calculate the elastostatic field in an unbounded isotropic elastic medium containing multiple orthotropic inclusions subject to remote loading, and a Mixed Volume and Boundary Integral Equation Method is introduced for the solution of elastostatic problems in unbounded isotropic materials containing multiple anisotropic inclusions as well as one void under uniform remote loading. A detailed analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out for square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively. Also, an analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out, when it is assumed that a void is replaced with one inclusion adjacent to the central inclusion of square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively, due to manufacturing and/or service induced defects. The effects of random orthotropic fiber packing on stresses at the interface between the isotropic matrix and the central orthotropic inclusion are compared with the influences of square and hexagonal orthotropic fiber packing on stresses. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with multiple orthotropic inclusions and one void, it will be established that these new methods are very accurate and effective for investigating effects of general anisotropic fiber packing on stresses in composites.

Investigation of Fiber Distribution in Concrete Batches Discharged from Ready-Mix Truck

  • Sorensen, Christian;Berge, Egil;Nikolaisen, Eirik B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.279-287
    • /
    • 2014
  • This paper presents the findings of an investigation of the fiber content variations in concrete being discharged from a ready-mix truck at the construction site. Concrete samples were extracted from the truck drums at the beginning, middle and end of discharge. Subsequently, fibers in each sample were separated from the concrete, and weighed. Presumably, synthetic macro fibers will float towards the top, i.e. towards the drum opening, of the inclined, revolving truck-drum, while, on the other hand, steel fibers will tend to gravitate towards the lower parts of the mixer drum. Accordingly, the discharge batch, containing synthetic macro fibers, will contain a higher amount of synthetic fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content will gradually decrease further down the batch. The discharge batch of steel fiber concrete will contain fewer fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content should gradually increase further down the batch. The correctness of the foregoing is partly confirmed. A certain percentage of the truck loads did not comply with the proposed requirements, mainly steel fiber reinforced batches, indicating the necessity of a code or guideline amendment. A change in the Norwegian shotcrete directive was made in 2011, based upon experimental research work (2010), which, in combination with the subsequent University of Life Sciences report (2012), constitutes the foundation of this article.

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi;Han, Xiaoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.273-279
    • /
    • 2017
  • A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.

Effects of Steel Fiber Concrete (鋼纖維에 의한 콘크리트의 補强效果)

  • Koh, Chae-Koon;Kim, Moon-Ki;Rhee, Shin-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.47-56
    • /
    • 1985
  • Wasting fiberous residues from the cutting processes of steel materials at an iron-Works were mixed with concrete. The strength and toughness of steel fiber concrete with different steel contents were tested in a laboratory. The test results showed that the steel fiber residues can be used for the reinforcement of concrete. The potential applications of such product include floor constructions for facilities like dairy barns, grain storages, and machinery shops. The test results are as follows. 1. The compressive strengths of steel fiber concrete with one percent steel content by volume were 20 percent greater than that of plain concrete. The treatments also increased the concrete toughness by 96 percent. 2. When applied to tensile forces, the steel fiber concrete showed the increased strengths by 20 percent, and the toughness by 48 percent. 3. The steel content levels greater than or equal to 1.5 percent by volume resulted in the decreases of the compressive and tensile strengths of steel fiber concrete by 10 percent as compared to plain concrete. The concrete toughness increased with the steel contents. 4. The reinforcement effects of steel fiber depend on the quality of fiber material being used. Good steel fiber for concrete reinforcement appears to be uniform in shape and component, fine and long, and round-shaped.

  • PDF