• Title/Summary/Keyword: Fiber surface engineering

Search Result 1,128, Processing Time 0.033 seconds

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.

Preparation and Surface Charge Characterization of Polystyrene Particles and Powders with Carboxyl and/or Poly(ethylene glycol) Groups

  • Kim, Bae-Joong;Kim, Seong-Hun;Park, Ki-Hong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.94-94
    • /
    • 2003
  • Cross-linked polystyrene (PS) particles with carboxyl and/or poly(ethylene glycol) units on surface were formed by an emulsifier-free emulsion polymerization using styrene, methacrylic acid (MA), and poly(ethylene glycol) dimethacrylate (PEG-diMMA) at pH 7, and followed by freeze-drying to give the corresponding powders. Monodisperse polymer particles could be obtained at a concentration of PEG-diMMA 1 mol% relative to styrene. Zeta potential of polymer surface was measured to be 91 mV at a polymer of PEG-diMMA 1 mol% and was dropped as the content of MA increased.

  • PDF

A Study on Precise Drilling Characteristics of Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 정밀드릴가공 특성에 관한 연구)

  • 김홍배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.203-208
    • /
    • 1998
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability characterisitcs of the drilling operation of the carbon fiber epoxy composite materials was experimentally investigated. The experimental results are as follows 1.The entrance of hole is very good manufacturing existing, but exit come to occur sever surface exfoliation. 2. The cutting force in drilling of the carbon fiber epoxy composite materials is decreased as the drilling speed increased. 3.The hole of the carbon fiber epoxy composite materials is not good manufacturing by use of the standard twist, therefore, the new drill designed in order to accurate hole.

  • PDF

Surface Morphologies and Internal Fine Structures of Bast Fibers

  • Wang H. M.;Wang X.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Fiber surface morphologies and associated internal structures are closely related to its properties. Unlike other fibers including cotton, bast fibers possess transverse nodes and fissures in cross-sectional and longitudinal directions. Their morphologies and associated internal structures were anatomically examined under the scanning electron microscope. The results showed that the morphologies of the nodes and the fissures of bast fibers varied depending on the construction of the inner fibril cellular layers. The transverse nodes and fissures were formed by the folding and spiralling of the cellular layers during plant growth. The dimensions of nodes and fissures were determined by the dislocations of the cellular layers. There were also many longitudinal fissures in bast fibers. Some deep longitudinal fissures even opened the fiber lumen for a short way along the fiber. In addition, the lumen channel of the bast fibers could be disturbed or disrupted by the nodes and the spi­rals of the internal cellular layers. The existence of the transverse nodes and fissures in the bast fibers could degrade the fiber mechanical properties, whereas the longitudinal fissures may contribute to the very rapid moisture absorption and desorption.

Surface Modification Effect and Mechanical Property of para-Aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성)

  • Park, Sung-Min;Kwon, Il-Jun;Kim, Myung-Soon;Kim, Sam-Soo;Choi, Jae-Young;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • para-Aramid fibers were treated by low-temperature plasma to improve the adhesion. The surface of para-aramid fibers were treated with gaseous plasma of several discharge power and treatment time in oxygen gas at 1Torr pressure. The treated fibers at low-temperature plasma were taken oxygen-containing functional groups and micro-crator on the surface. The modified fibers were measured by dynamic contact angle analyzer and XPS(X-ray photoelectron spectroscopy). The Interfacial adhesion properties of aramid fabric and polyurethane resin were determined by T-peel test. The surface of aramid fibers were observed by FE-SEM photographs. It was found that surface modification and chemical component ratio of the aramid fibers were improved wettability and adhesion characterization.

Comparative Analysis of Two Selective Bleaching Methods on Alpaca Fibers

  • Liu, Xin;Hurren, Christopher J.;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.124-128
    • /
    • 2003
  • Dark brown Alpaca fiber was reduced in shade via selective bleaching with peroxide. Two selective oxidative bleaching methods were tested on alpaca top to assess their effectiveness for color removal and fiber quality properties. Color change, bundle strength, weight loss, fiber diameter, surface modification, dye-ability and dye wash fastness were assessed for both methods and compared with the original brown top. Bleach method 1 (BL-I) showed little surface modification, 5.8% weight loss and 2.4% strength loss. D1925 yellowness index was reduced to 74.3 from 83.1 and provided a good base for the dyeing of medium to deep shades. Bleach method 2 (BL-II) displayed considerable surface modification, 7.8% weight loss and 18% strength loss. BL-II also resulted in a mean diameter reduction of 1.9 micron during bleaching. Yellowness was reduced to 64.5 from 83.1 and provided a very good base for the dyeing of medium to deep shades. BL-I showed better exhaustion of the premetallised dye Lanaset Violet B than BL-II. Wash fastness for BL-II was 1 grey scale unit poorer than BL-I. BL-II showed far better color clarity at pale depths however the wash fastness of the finished product was not good enough to maintain the depth or clarity of the color. BL-I showed poorer clarity of color but exhibited better wash fastness results.

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF

Biocompatibility and Biodegradation of Poly(butylene succinate) ionomer (Poly(butylene succinate) ionomer (PBSi)의 생체적합성과 생분해에 관한 연구)

  • Han, Sang-Il;Kang, Sun-Woong;Kim, Byung-Soo;Seungsoon Im
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.187-188
    • /
    • 2003
  • In previous study, we examined poly(butylene succinate) ionomer (PBSi) and confirmed that PBSi showed acceptable mechanical and rheological properties to apply in various field, due to the physical cross-linkage formed by ion aggregation. Besides, the incorporation of ionic groups led to the change of surface properties such as the hydrophilicity and surface morphology, which could affect hydrolytic degradation. (omitted)

  • PDF

A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites (탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구)

  • Hong, Eunmi;Lee, Kyuhwan;Kim, Yangdo;Lim, Dongchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.223-228
    • /
    • 2013
  • In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

Study on pH Sensor using Methylene Blue Adsorption and A Long-Period Optical Fiber Grating Pair

  • Jeon Young-Hee;Kwon Jae-Joong;Lee Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • We propose a new pH-sensing scheme using a methylene blue adsorption on an optical fiber cladding surface. Interactions between the silica and hydroxyl ions of a base solution induce the surface of the silica negatively charged. The charged surface attracts the positively charged chromophores of methylene blue. As the pH of the solution is reduced, the electrostatic attraction will also be reduced. This electrostatic attraction can change the transmitted light intensity of the cladding mode, since the boundary condition changes. We also carried out a simulation to verify the effect from external refractive index change around a long-period fiber grating. Our results confirm that the wavelength shift by external refractive index change is negligible compared to the transmitted light intensity variation of the cladding mode. By using a long-period grating pair, we can detect the cladding mode transmittance variations. Experimentally, we showed the possibility of pH sensing in the $1.5{\mu}m$ infrared region.