• Title/Summary/Keyword: Fiber surface engineering

Search Result 1,128, Processing Time 0.03 seconds

Preparation, characterization of activated carbon fiber from luffa and its application in CVFCW for rainwater treatment

  • Ahmed, Sanjrani Manzoor;Zhou, Boxun;Zhao, Heng;Zheng, You Ping;Wang, Yue;Xia, Shibin
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2020
  • ACF preparation from different materials has been attached with great attention during these years. This study was conducted to prepare activated carbon fiber (ACF) from luffa through the processes i.e pre-treatment, pre-oxidation and carbonization activation. Besides, this study also characterizes the ACF and its effect, i.e effect of pre-oxidation time and temperature also activation time and temperature on the compressive strength of ACF were investigated. The results from SEM, BET, FTIR and XRD show that the ACF is very efficient. The products under the optimum conditions had a specific surface area of 478.441 m2 /g with an average pore diameter of 3.783nm, and a pore volume of 0.193 cm3 /g. The surface of the luffa fiber is degummed and exposed, which is beneficial to the subsequent process and the increase of product properties. The compressive strength of HP-ACF was prepared under the optimum conditions, which can reach 0.2461 MPa. ACF is rich in micro-pores and has a good application prospect in the field of environmental protection.

Development of UV molding Process to Integrate Microlens Array on VCSEL Array for Optical Communication (광통신 용 VCSEL Array상에 Microlens Array를 집적하기 위한 UV성형 공정기술 개발)

  • 한정원;김석민;김홍민;이지승;임지석;강신일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.840-843
    • /
    • 2004
  • UV molding is a process for integrating micro/nano polymeric optical components on optoelectronic modules. In the present study, a microlens array for vertical cavity surface emitting laser(VCSEL) to fiber coupling was designed, integrated and tested. At the design stage, design variables ware optimized to maximize the coupling efficiency, and tolerance analysis was carried out. At the integration stage, the UV transparent mold was fabricated and the microlens array on VCSEL array was integrated by UV molding process. Finally the coupling efficiency of VCSEL to fiber was measured and analyzed.

  • PDF

Tribological Characteristics of Carbon Fiber Reinforced Plastics Prepared by Ion-Assisted Reaction (이온도움반응법에 의한 탄소섬유복합재의 트라이볼로지 특성연구)

  • 오성모;김정기;이봉구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.103-108
    • /
    • 2004
  • Carbon fiber reinforced composites(CFRP) were fabricated with phenolic resin matrix by hot press molding, and its surface was modified by the ion-assisted reaction process. When we tested the friction coefficient and wear rate variation and observed the effect of fibers with respect to friction and wear characteristics, the amount of pitch based carbon fiber was 45wt% and the average friction coefficient was the lowest at 0.12. When the amount of ion-irradiation was $1\times10^{l6}ions/cm^2$, the friction coefficient of the composites was about 0.12 and the wear mode was stable, whereas, the friction coefficient of the non-treated composites was about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5\times10^{l6}ions/cm^2$$1\times10^{l6}ions/cm^2$ion-irradiation case.

Mechanical Properties of Sisal Fiber Reinforced Composites on Surface Treatment and Temperature (사이잘섬유강화 복합재료의 표면처리와 환경온도에 따른 기계적 특성)

  • Song, Jun Hee;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.471-476
    • /
    • 2008
  • There has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. It was demonstrated to determine the characteristic of tensile behaviors under the variation of test temperature on sisal fiber reinforced polymer composites by RTM process. Especially, the permanganate-treated-fibers improved tensile strength by increasing the coherence with matrix. Material deformation is restricted to increment of cohesion for surface treatment of fiber and then elongation decreas.

Iterative neural network strategy for static model identification of an FRP deck

  • Kim, Dookie;Kim, Dong Hyawn;Cui, Jintao;Seo, Hyeong Yeol;Lee, Young Ho
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • This study proposes a system identification technique for a fiber-reinforced polymer deck with neural networks. Neural networks are trained for system identification and the identified structure gives training data in return. This process is repeated until the identified parameters converge. Hence, the proposed algorithm is called an iterative neural network scheme. The proposed algorithm also relies on recent developments in the experimental design of the response surface method. The proposed strategy is verified with known systems and applied to a fiber-reinforced polymer bridge deck with experimental data.

Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

  • Kim, Dae Ho;Kim, Doo Won;Kim, Bo-Hye;Yang, Kap Seung;Lim, Yong-Kyun;Park, Eun Nam
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.104-108
    • /
    • 2013
  • The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.