• Title/Summary/Keyword: Fiber reinforced polymers

Search Result 161, Processing Time 0.02 seconds

Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites

  • Mohammed, Thaer Jasim;Abu Bakar, B.H.;Bunnori, N. Muhamad
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.123-136
    • /
    • 2015
  • The proposed techniques to repair concrete members such as steel plates, fiber-reinforced polymers or concrete have important deficiencies in adherence and durability. The use of ultra high performance fiber concrete (UHPFC) can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen reinforced concrete beams under torsion is investigated. Seven specimens of concrete beams reinforced with longitudinal and transverse reinforcements. One of these beams consider as control specimen while the others was strengthened by UHPFC on four, three, and two sides. This study includes experimental results of all beams with different types of configurations and thickness of UHPFC. As well as, finite element analysis was conducted in tandem with experimental test. Results reveal the effectiveness of the proposed technique at cracking and ultimate torque for different beam strengthening configurations, torque - twist graphs and crack patterns. The UHPFC can generally be used as an effective external torsional reinforcement for RC beams. It was noted that the behavior of the beams strengthen with UHPFC are better than the control beams. This increase was proportional to the retrofitted beam sides. The use of UHPFC had effect in delaying the growth of crack formation. The finite element analysis is reasonably agreement with the experimental data.

Experimental behavior of eccentrically loaded RC slender columns strengthened using GFRP wrapping

  • Elwan, S.K.;Omar, M.A.
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.271-285
    • /
    • 2014
  • This paper aims to examine the behavior of slender reinforced concrete columns confined with external glass fiber reinforced polymers (GFRP) sheets under eccentric loads. The experimental work conducted in this paper is an extension to previous work by the author concerning the behavior of eccentrically loaded short columns strengthened with GFRP wrapping. In this study, nine reinforced concrete columns divided into three groups were casted and tested. Three eccentricity ratios corresponding to e/t = 0, 0.10, and 0.50 in one direction of the column were tested in each group. The first group was the control one without confinement with slenderness ratio equal 20. The second group was the same as the first group but fully wrapped with one layer of GFRP laminates. The third group was also fully wrapped with one layer of GFRP laminates but having slenderness ratio equal 15. The experimental results of another two groups from the previous work were used in this study to investigate the difference between short and slender columns. The first was control one with slenderness ratio equal 10 and the second was fully wrapped and having the same slenderness ratio. All specimens were loaded until failure. The ultimate load, axial deformation, strain in steel bars, and failure mechanisms of each specimen were generated and analyzed. The results show that GFRP laminates confining system is less effective with slender columns compared with short one, but this solution is still applied and it can be efficiently utilized especially for slender columns with low eccentric ratio.

Intermediate crack-induced debonding analysis for RC beams strengthened with FRP plates

  • Wantanasiri, Peelak;Lenwari, Akhrawat
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.473-490
    • /
    • 2015
  • This paper presents the analysis of intermediate crack-induced (IC) debonding failure loads for reinforced concrete (RC) beams strengthened with adhesively-bonded fiber-reinforced polymer (FRP) plates or sheets. The analysis consists of the energy release and simple ACI methods. In the energy release method, a fracture criterion is employed to predict the debonding loads. The interfacial fracture energy that indicates the resistance to debonding is related to the bond-slip relationships obtained from the shear test of FRP-to-concrete bonded joints. The section analysis that considers the effect of concrete's tension stiffening is employed to develop the moment-curvature relationships of the FRP-strengthened sections. In the ACI method, the onset of debonding is assumed when the FRP strain reaches the debonding strain limit. The tension stiffening effect is neglected in developing a moment-curvature relationship. For a comparison purpose, both methods are used to numerically investigate the effects of relevant parameters on the IC debonding failure loads. The results show that the debonding failure load generally increases as the concrete compressive strength, FRP reinforcement ratio, FRP elastic modulus and steel reinforcement ratio increase.

Flexural performance of FRP-reinforced concrete encased steel composite beams

  • Kara, Ilker Fatih
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.775-793
    • /
    • 2016
  • This paper presents a numerical method for estimating the curvature, deflection and moment capacity of FRP-reinforced concrete encased steel composite beams (FRP-RCS). A sectional analysis is first carried out to predict the moment-curvature relationship from which beam deflection and moment capacity are then calculated. Comparisons between theoretical and experimental results of tests conducted elsewhere show that the proposed numerical technique can accurately predict moment capacity and deflection of FRP-RCS composite beam. The numerical results also indicated that beam ductility and stiffness are improved when encased steel is added to FRP reinforced concrete beams. ACI, ISIS and Bischoff models for deflection prediction compared well at low load, however, significantly underestimated the experimental results for high load levels.

Thermotropic Liquid Crystal Polymer Reinforced Poly(butylene terephthalate) Composites to Improve Heat Distortion Temperature and Mechanical Properties

  • Kim, Jun-Young;Kang, Seong-Wook;Kim, Seong-Hun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.358-366
    • /
    • 2006
  • Thermotropic liquid crystal polymer (TLCP)-reinforced poly(butylene terephthalate) (PBT) composites were prepared by melt processing. The improvement in the mechanical properties and the processability of the PBT/TLCP composites was attributed to the reinforcing effect by TLCP phase and its well distribution in the PBT matrix. X-ray diffraction results demonstrated that a slow cooling process leads to the thicker lamellar structures and the formation of more regular crystallites in the composites. The incorporation of TLCP improves not only the tensile strength and flexural modulus but also the heat distortion temperature (HDT) of the PBT/TLCP composites. The HDT values of the composites were dependent on TLCP content. The improvement in the HDT values of the PBT/TLCP composites may be explained in terms with the increased flexural modulus, the development of more regular crystalline structures, and the enhancement of the ability of the composites to sustain the storage modulus by TLCP phase. In addition, the simple additivity rule makes it possible to predict the HDT values of the PBT/TLCP composites.

Effect of Alkyl Ketene Dimer(AKD) on Red Algae Reinforced Biocomposites (AKD 처리한 홍조류섬유 보강 바이오복합재료의 특성)

  • Lee, Min-Woo;Park, Dong-Hui;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.66-71
    • /
    • 2011
  • Biocomposites were fabricated with biodegradable polymers and natural fibers. Biocomposites have benefits of low cost, low density, and biodegradability over inorganic fiber composite, and give comparable strength properties. Hydrophobic polymer used for sizing in paper industry, AKD (Akenyl Keten Dimer), was applied to natural fibers, red algae fibers (RAF) in this study, to make fiber surfaces more compatible to hydrophobic nature of matrix polymers. Composites with RAF, kenaf, glass fibers, and carbon fibers have been fabricated by a compression molding method and their thermo-mechanical properties have been studied. Also, the thermal dimensional stability test was done from at 30 to $100^{\circ}C$. The storage moduli and the thermo-mechanical stabilities of polypropylene and poly lactic acid based biocomposites were improved by reinforcing with the RAF and much more with AKD treated fibers. Dimensional stability of biocomposite was also markedly improved by AKD pretrement on RAF.

An Experimental Study on the Behavior of RC Beams Externally Bonded with FRPs Under Sustained Loads (지속하중을 받은 FRP 외부부착 보강 철근콘크리트 보의 거동 특성에 관한 실험적 연구)

  • Shim, Jae-Joong;Oh, Kwang-Jin;Kim, Yeon-Tae;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • In the recent construction industry, an external strengthening method using fiber reinforced polymers has been widely used. Since reinforced concrete structures strengthened with fiber reinforced polymers are always under sustained loads, influence of creep and shrinkage on the structures is inevitable. Due to the creep and shrinkage, behaviors of the structures, such as deflection, deformation, recovery capability, strength and so on are also under the influence of creep and shrinkage. Thus, in order to estimate efficacy, creep recovery and residual strength of FRP strengthened RC beams, long-term flexural experiments and static flexural experiments were carried out. As the result of the experiments, FRP strengthened RC beams were very effective in terms of deflection control. Furthermore, the strengthened beams had higher immediate deformation recovery than immediate deformation. Through the static flexural experiments, it was shown that the CFRP strengthened beam had high residual strength. It seems that the sustained loads did not affect bond and residual strength of the beams.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Efficient repair of damaged FRP-reinforced geopolymeric columns using carbon fiber reinforced polymers

  • Mohamed Hechmi El Ouni;Ali Raza;Khawar Ali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Geopolymer concrete (GC) can be competently utilized as a practical replacement for cement to prevent a high carbon footprint and to give a direction toward sustainable concrete construction. Moreover, previous studies mostly focused on the axial response of glass fiber reinforced polymer (glass-FRP) concrete compressive elements without determining the effectiveness of repairing them after their partial damage. The goal of this study is to assess the structural effectiveness of partially damaged GC columns that have been restored using carbon fiber reinforced polymer (carbon-FRP). Bars made of glass-FRP and helix made of glass-FRP are used to reinforce these columns. For comparative study, six of the twelve circular specimens-each measuring 300 mm×1200 mm-are reinforced with steel bars, while the other four are axially strengthened using glass-FRP bars (referred to as GSG columns). The broken columns are repaired and strengthened using carbon-FRP sheets after the specimens have been subjected to concentric and eccentric compression until a 30% loss in axial strength is attained in the post-peak phase. The study investigates the effects of various variables on important response metrics like axial strength, axial deflection, load-deflection response, stiffness index, strength index, ductility index, and damage response. These variables include concentric and eccentric compression, helix pitch, steel bars, carbon-FRP wrapping, and glass-FRP bars. Both before and after the quick repair process, these metrics are evaluated. The results of the investigation show that the axial strengths of the reconstructed SSG and GSG columns are, respectively, 15.3% and 20.9% higher than those of their original counterparts. In addition, compared to their SSG counterparts, the repaired GSG samples exhibit an improvement in average ductility indices of 2.92% and a drop in average stiffness indices of 3.2%.

Shear-Strengthening of Reinforced & Prestressed Concrete Beams Using FRP: Part II - Experimental Investigation

  • Kang, Thomas H.K.;Ary, Moustapha Ibrahim
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • The main objectives of this research were to experimentally evaluate the impact of Carbon Fiber-Reinforced Polymers (CFRP) amount and strip spacing on the shear behavior of prestressed concrete (PC) beams and to evaluate the applicability of existing analytical models of Fiber-Reinforced Polymer (FRP) shear capacity to PC beams shear-strengthened with CFRP. The Ushaped CFRP strips with different spacing were applied externally to the test specimens in order to observe the overall behavior of the prestressed concrete I-beams and the mode of failure of the applied CFRP strips. Results obtained from the experimental program showed that the application of CFRP strips to prestressed concrete I-beams did in fact enhance the overall behavior of the specimens. The strengthened specimens responded with an increase in ductility and in shear capacity. However, it should be noted that the CFRP strips were not effective at all at spacing greater than half the effective depth of the specimen and that fracture of the strips was the dominant failure mechanism of CFRP. Further research is needed to confirm the conclusion derived from the experimental program.