• Title/Summary/Keyword: Fiber reinforced polymer(FRP)

Search Result 375, Processing Time 0.024 seconds

Optimum Design of New Type Offshore Wind Power Tower Structure (신형식 해상풍력 구조체 최적 설계)

  • Han, Taek-Hee;Yoon, Gil-Lim;Won, Deok-Hee;Oh, Young-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.388-389
    • /
    • 2012
  • Current offshore wind power towers are made of steel. As the capacity of wind power increases, the tower structures become higher. Steel structures have buckling problem and their increased slenderness ratios make them weak against buckling and vibration. In this study, double skinned composite tubular (DSCT) offshore wind power tower was proposed and its optimum design method was suggested. Fiber reinforced polymer (FRP) and steel were considered as material of the tubes. And both materials satisfied the required capacity.

  • PDF

Flexural Failure Design Criteria for Retrofitted RC Slabs using FRP-UHPC Hybrid System (FRP-UHPC 복합 보강기법으로 보강된 RC 슬라브의 휨 파괴를 위한 설계 조건)

  • Kim, Jung Joong;Noh, Hyuk-Chun;Reda Taha, Mahmoud M.
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • This study proposes flexural failure design criteria of continuous slabs enhanced by a hybrid system of fiber reinforced polymer (FRP) and ultra high performance concrete (UHPC). The proposed hybrid retrofit system is designed to be placed at the top surface of the slabs for flexural strengthening of the sections in both positive and negative moment zones. The enhancing mechanisms of the proposed system for both positive and negative moment regions are presented. The neutral axis of the enhanced sections in positive moment zone at flexural failure is enforced to be in UHPC overlay for preventing the compression in FRP. From this condition, a relationship between design parameters of FRP and UHPC is established. Although the capacity of the proposed retrofit system to enhance flexural strength and ductility is confirmed through experiments of one-way RC slabs having two continuous spans, the retrofitted slabs failed in shear. To prevent this shear failure, a design criteria of flexural failure is proposed.

FRP versus traditional strengthening on a typical mid-rise Turkish RC building

  • Smyrou, Eleni
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper investigates the limits and efficacies of the Fiber Reinforced Polymer (FRP) material for strengthening mid-rise RC buildings against seismic actions. Turkey, the region of the highest seismic risk in Europe, is chosen as the case-study country, the building stock of which consists in its vast majority of mid-rise RC residential and/or commercial buildings. Strengthening with traditional methods is usually applied in most projects, as ordinary construction materials and no specialized workmanship are required. However, in cases of tight time constraints, architectural limitations, durability issues or higher demand for ductile performance, FRP material is often opted for since the most recent Turkish Earthquake Code allows engineers to employ this advanced-technology product to overcome issues of inadequate ductility or shear capacity of existing RC buildings. The paper compares strengthening of a characteristically typical mid-rise Turkish RC building by two methods, i.e., traditional column jacketing and FRP strengthening, evaluating their effectiveness with respect to the requirements of the Turkish Earthquake Code. The effect of FRP confinement is explicitly taken into account in the numerical model, unlike the common procedure followed according to which the demand on un-strengthened members is established and then mere section analyses are employed to meet the additional demands.

Blast analysis of concrete arch structures for FRP retrofitting design

  • Nam, Jin-Won;Kim, Ho-Jin;Yi, Na-Hyun;Kim, In-Soon;Kim, Jang-Ho Jay;Choi, Hyung-Jin
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.305-318
    • /
    • 2009
  • Fiber Reinforced Polymer (FRP) is widely used for retrofitting concrete structures for various purposes. Especially, for the retrofitting of concrete structures subjected to blast loads, FRP is proven to be a very effective retrofitting material. However, a systematic design procedure to implement FRP for concrete structure retrofitting against blast loads does not exist currently. In addition, in case of concrete structures with inarticulate geometrical boundary conditions such as arch structures, an effective analysis technique is needed to obtain reliable results based on minimal analytical assumptions. Therefore, in this study, a systematic and efficient blast analysis procedure for FRP retrofitting design of concrete arch structure is suggested. The procedure is composed of three sequential parts of preliminary analysis, breach and debris analysis, and retrofit-material analysis. Based on the suggested procedure, blast analyses are carried out by using explicit code, LS-DYNA. The study results are discussed in detail.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Experimental Study on the Flexural Behaviour of CFRP-bar NSM R.C Beams depending on Adhesive and Anchorage (접착재 종류와 정착구 유무에 따른 탄소막대 매립보강 RC보의 휨 거동에 관한 실험적 연구)

  • Kim, Sung-Won;Lee, Hyung-Geun;Yeo, Hwan-Jun;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.73-80
    • /
    • 2014
  • For the last decade many bridges and buildings have experienced flexural strengthening with the fiber reinforced polymer(FRP) bonding system, demands for increasing heavy traffic loads and the changing of the code application. Of the many strengthening systems, NSM(near surface mounted) system with FRP has become attractive and popular way of strengthening for the existed RC structures and many studies and applications of this technique have significantly increased all over the world. Meanwhile, polymer mortar that contains much of the same ingredients as cement but includes the addition of certain polymer resins for enhancing desired physical properties, has been used as an alternative adhesive. This paper focuses on flexural behaviour of CFRP-bar NSM system with variables such as kinds of adhesive, anchorage, sectional aspect ratio. Based on the test results and test-to-predicted ratio, this paper provides researchers and practical engineers a fundamental knowledge and intuition.

Effect of Freezing and Thawing on Adhesion of Cement Concrete with Coarse-sand Coated FRP (규사코팅 FRP와 콘크리트 부착특성에 동결융해가 미치는 영향)

  • Lee, Gyu Phil;Park, Kwang Phil;Hwang, Jae Hong;Kim, Dong Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • As fiber reinforced polymer (FRP) material is appled for a curved structure such as tunnel, FRP material must has a curved shape. Until now, the curved FRP material has been producted by hand-lay-up or filament winding work. It is impossible for mass production of the curved FRP material by these methods. Also, the quality of product by these methods is lower than that by pultrusion method. New pultrusion method and equipment had been developed for production of FRP material with steady curvature. The objective of this study is to evaluate the effect of freezing and thawing on adhesion of cement concrete with coarse-sand coated FRP in repair and reinforcement of cement-concrete structure using curved FRP material.

An Experimental Study of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 실험적 연구)

  • Yoo, Seung-Woon;Kook, Moo-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • An experimental study of composite beam with perforated fiber reinforced polymer(FRP) plank as a permanent formwork and the tensile reinforcement was performed. A combined formwork and reinforcement system can facilitate rapid construction of concrete members since no conventional formwork is needed, which requires time consuming assembly and dismantling. In order for a smooth FRP plank to act compositely with the concrete, the surface of the FRP needs to be treated to increase its bond properties. Aggregates were bonded to the FRP plank using a commercially available epoxy and perforated web of plank. No additional flexural or shear reinforcement was provided in the beams. For comparison, two control specimens were tested. One control had no perforated hole in the web of FRP plank and the other had internal steel reinforcing bars instead of the FRP plank. The beams were loaded by central patch load to their ultimate capacity. This study demonstrates that the perforated FRP plank has the potential to serve as a permanent formwork and reinforcing for concrete beam.

A Study on the Lightweight Design of a Seat Frame in Automotive Vehicles (자동차 시트 프레임의 경량화 설계에 관한 연구)

  • 최금호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.83-89
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product studies on material selection and structural analysis were performed. Structural analysis was performed with a finite element method. The analysis was done for several cases suggested in various safety regulations. Each results was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure with reinforced by X-shape frame. Substitution of the material resulted in a weight reduction effect with equivalent strength fatigue and impact characteristics.

  • PDF

Calibration of Strain Gauge for Thermal Expansion Coefficientof Fiber Reinforced Composites at Cryogenic Temperature (극저온 환경에서의 섬유강화 복합재료의 열팽창 계수 측정을 위한스트레인 게이지의 보정에 관한 연구)

  • Lee, Won-Oh;Lee, Sang-Bok;Yi, Jin-Woo;Um, Moon-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Since the fiber reinforced polymeric (FRP) composites are considered in next generation of space transportation systems, reliable thermal expansion properties should be well provided for structural design of composite materials. To obtain accurate mechanical behaviors at a cryogenic temperature, precise strain measurement and calibration must be provided. In this work, apparent strains (or thermal output) of temperature self-compensated strain gages were deliberately investigated for epoxy, CTBN modified epoxy and carbon fabric composite system from room temperature to liquid nitrogen temperature. Also, fourth-order thermal output curves were presented for the further calibration. The results showed that the thermal output is heavily dependent on test materials and a large amount of apparent strains were observed for the polymer resins.