• Title/Summary/Keyword: Fiber properties

Search Result 4,935, Processing Time 0.037 seconds

Evaluation of Crack Control Performance of the Concrete with Fiber Combination (섬유혼입 조건에 따른 콘크리트의 균열제어 성능 평가)

  • Park, Jae-Yong;Lee, Myoung-Ho;Kang, Byung-Hoi;Kim, Kyoung-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.21-22
    • /
    • 2013
  • Nowadays, the fiber which mixed with concrete matrix always has low adhesion with cement paste. It's difficult to use fiber to reinforce the structure. For more adding fiber in concrete would cause some problems as the low flowability and surface polishing. Further study is needed in fiber using. In this research, further study in fiber reinforced concrete has been invested. Various fibers with different properties have been used to prevent cracking. Fiber reinforced concrete's fundamental properties as slump, air content, compressive strength and tensile strength have been tested. Optimum type of the fiber and optimum addition ratio of fiber has been invested to increase the utility of the fiber which used in concrete.

  • PDF

Hoop Ring Test Method to Evaluate the Fiber Material Properties of Composite Motor Case (Hoop ring 시험방법을 이용한 복합재연소관의 섬유방향 물성 평가)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyung-Kun;Lee, Sang-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.429-432
    • /
    • 2009
  • The deformation and burst pressure of composite motor case highly depends on fiber material properties. Therefore, measuring exact fiber material properties is a priority item to develop a advanced composite motor case. However, the fiber material properties in composite motor case is very sensitive on the various processing variables (equipment, operator and environmental condition etc..)and size effect, so the fiber material properties can't be measured exactly from the existing specimen test method. This paper suggests a newly developed test method, hoop ring test, that is capable of pressure testing with ring specimens extracted from real composite motor case. The results of hoop ring test showed excellent agreement with measured fiber material properties from hydro-burst test with full scale composite motor cases.

  • PDF

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

Fabrication of Carbon/Basalt Hybrid Composites and Evaluation of Mechanical Properties (탄소/현무암 섬유강화 하이브리드 복합재료의 성형과 기계적 특성 평가)

  • Lee, Jin-Woo;Kim, Yun-Hae;Jung, Min-Kyo;Yoon, Sung-Won;Park, Jun-Mu
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • Carbon Fiber Reinforced Plastic (CFRP) has strong and superb material properties, especially in mechanical and heat-resisting aspects, but the drawback is its high price. In this study, we made a hybrid composite using carbon fiber and basalt fiber, which is expected to attribute to its strong material properties and its financial benefits. We found out that the higher the content of basalt fiber included, the lower the intensity, and carbon's intensity contents of 80% showed the similar intensity level as that of CFRP. Besides it was possible to get a better mechanical properties using the composite that included the mixed fiber, instead of using a composition of separate fibers filed.

Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids

  • Prabhu, T. Niranjana;Demappa, T.;Harish, V.;Prashantha, K.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.97-111
    • /
    • 2015
  • Polypropylene short fiber (PP)-clay particulate-epoxy ternary composites were prepared by reinforcing PP short fiber and clay particles in the range of 0.1 phr to 0.7 phr into epoxy resin. Prepared hybrid composites were characterized for their mechanical, thermal and flame retardant properties. The obtained results indicated an increase in impact resistance, tensile strength, flexural strength and Young's modulus to an extent (up to 0.5 phr clay and 0.5 phr PP short fiber) and then decreases as the reinforcing phases are further increased. The thermal stability of these materials are found to increase up to 0.2 phr clay and 0.2 phr PP addition, beyond which it is decreased. Addition of clay is found to have the negative effect on epoxy-PP short fiber composites, which is evident from the comparison of mechanical and thermal properties of epoxy-0.5 phr PP short fiber composite and epoxy-0.5 phr PP short fiber-0.5 phr clay composite hybrid. UL-94 tests conducted on the composite hybrids have showed a reduction in the burning rate. Morphological observations indicated a greater fiber pull with the addition of clay. The performed tests in the present study indicated that materials under investigation have promising applications in construction, agriculture and decorative purposes.

Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation (전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상)

  • Lee, Yeong Ju;Kim, Hyun Bin;Lee, Seung Jun;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis

  • Majeed, Samadar S.;Haido, James H.;Atrushi, Dawood Sulaiman;Al-Kamaki, Yaman;Dinkha, Youkhanna Zayia;Saadullah, Shireen T.;Tayeh, Bassam A.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.451-463
    • /
    • 2021
  • Inorganic basalt fiber (BF) is a novel sort of commercial concrete fiber which is made with basalt rocks. Previous studies have not sufficiently handled the behavior of self-compacted concrete, at elevated temperature, containing basalt fiber. Present endeavor covers experimental work to examine the characteristics of this material at high temperature considering different fiber content and applied temperature. Different tests were carried out to measure the mechanical properties such as compressive strength (fc), modulus of elasticity (E), Poisson's ratio, splitting tensile strength (fsplit), flexural strength (fflex), and slant shear strength (fslant) of HSC and hybrid concrete. Gene expression programming (GEP) was employed to propose new constitutive relationships depending on experimental data. It was noticed from the testing records that there is no remarkable effect of BF on the Poisson's ratio and modulus of elasticity of self-compacted concrete. The flexural strength of basalt fiber self-compacted concrete was not sensitive to temperature in comparison to other mechanical properties of concrete. Fiber volume fraction of 0.25% was found to be the optimum to some extend according to degradation of strength. The proposed GEP models were in good matching with the experimental results.

Effect of Volume Fraction and Length of Fiber on the Mechanical Properties of Fiber Reinforced Concrete (섬유보강 콘크리트의 역학적 특성에 대한 섬유 체적비와 길이의 영향)

  • Yang, Keun-Hyeok;O, Seung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • Fifteen concrete specimens were mixed and tested to explore the significance and limitation of appling the polyvinyl alcohol (PVA) fiber and steel fiber with end hook to concrete. Main parameters investigated were volume fraction and length of the fibers. The measured mechanical properties of fiber reinforced concrete are analyzed according to the equivalent fiber amount index explaining the adding amount and length of fibers. Test results showed that compressive strength of fiber reinforced concrete was higher than that of concrete with no fiber by $10{\sim}20%$. The normalized splitting tensile strength and flexural strength of PVA fiber reinforced concrete were similar to those of concrete with no fiber, whereas those of steel fiber reinforced concrete increased with the increase of the equivalent fiber amount index. In particular, much higher ductile behavior was observed in steel fiber reinforced concrete than in PVA reinforced concrete, indicating that the slope of descending branch of load-displacement relationship of steel fiber reinforced concrete decreased with the increase of the volume fraction and length of the fiber.

Quantitative Analysis of Pulp Fiber Characteristics that Affect Paper Properties(I) (종이의 특성에 영향하는 펄프 섬유특성의 정량적 해석(I))

  • 이강진;박중문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Refining is one of the most important processes of fiber treatment that provides optical and physical properties of final paper products. The evaluation method of refining progress is usually freeness (CSF) or wetness (SR) test because of its rapidity and convenience. However, there are some deficiencies in using freeness or wetness test to evaluate pulp fibers accurately because its results are more influenced by fines contents than extent of fibers treatment. The objective of this study is to show the deficiency of wetness in evaluating the refining process. For this, beating is done by varying the beating load. Handsheets are made after beating until 25 and $32^{\circ}C$ SR, and then paper properties are measured. Refined fibers are analyzed by fiber length, fines contents, curl, kink, WRV, and zero-span tensile strength. The results show that longer beating time is required to reach the same wetness at lower beating load. There are differences in the average fiber length, distribution curve of fiber length, fines contents, curl, kink, WRV of long fiber fraction, drainage time, and zero-span tensile strength of rewetted sample at different beating load. At the low beating load in the same wetness, apparent density, breaking length, burst strength, and tear strength are higher, while opacity and air permeability are lower than those of the high beating load. Using Page s equation, which shows the relationship among tensile strength, intrinsic fiber strength, and interfiber bonding strength, interfiber bonding strength is calculated and analyzed to explain final paper properties. At $25^{\circ}C$ SR, interfiber bonding strength is only slightly higher at 2.5kgf beating load, while the intrinsic fiber strength is substantially higher. At $32^{\circ}C$ SR, intrinsic fiber strength is a little bit higher at 2.5kgf beating load, and interfiber bonding strength is remarkably higher than those of 5.6kgf beating load. These results can be used to explain the different properties of the final paper at selected beating loads.

  • PDF

An Experimental Study on Fundamental Quality Properties of Basalt Fiber Reinforced Mortar according to Application of High Volume Fly Ash (바잘트 섬유보강 모르타르의 하이볼륨 플라이애시 적용에 따른 기초 품질 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung Keol
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • This study was evaluated that fundamental quality properties in the mortar level, as part of a basic study for development of fiber reinforced concrete using basalt fiber. Mortar mixtures used in the experiments used the mortar using cement only and high volume fly ash mortar using fly ash of 50%, was evaluated by comparison. As a experiments results, high volume fly ash mortar using 50% fly ash was effective for improving fiber dispersibility than mortar using cement only, accordingly, it showed that fiber aggregation phenomenon has been greatly reduced. In addition, if the fly ash used much more than 50%, the compressive strength has been shown to decrease of about 30%, fiber length and mixing ratio of basalt fiber was found to have a greater effect on flow properties than mechanical properties.