• 제목/요약/키워드: Fiber particle

검색결과 362건 처리시간 0.026초

이식용(移植用)Pot의 제조(製造) 및 그 효과(効果)에 관(關)한 연구(硏究) (Studies on the Manufacture of Fiber Pot and its Effect for the Good Transplanting)

  • 김지문;이화형;권기원;송호경
    • 한국산림과학회지
    • /
    • 제46권1호
    • /
    • pp.1-9
    • /
    • 1980
  • 본(本) 연구(硏究)는 산지이식(山地移植)에서 Jiffy pot를 fiber pot로 대체가능(對替可能)한가 알아보기 위해 수행(遂行)되었다. fiber pot는 fiber, wood waste particle, particle 량(量)의 10%에 해당하는 bark powder로 만들어졌고 또 latex가 결합제(結合劑)로 첨가(添加)되었다. pot는 식물(植物)이 자라는 동안 pot벽(壁)의 wood fiber 분해(分解)에서 생기는 배양토(培養土)의 N흠핍증(欠乏症)을 막기 위해 충분(充分)한 요소액(尿素液)으로 spray되었다. fiber pot의 이용가능성(利用可能性)은 온실조건(溫室條件)하에 두 수종(樹種)의 service test에서 Jiffy pot와 비교(比較)되었다. 결과(結果)는 다음과 같이 요약(要約)된다. 1. 비중(比重), 비인열도(比引裂度), 비파열도(比破裂度)에 있어서 30% wood fiber+10%의 bark powder를 포함(包含)한 70% particle과 3% latex로 된 fiber pot가 Jiffy pot에서와 같은 좋은 결과(結果)를 나타냈다. 흡수력(吸水力)에 있어서는 50% fiber+50% particle과 3%-latex로 된 fiber pot가 가장 좋은 결과(結果)를 나타냈다. 뿌리의 pot벽(壁) 관통(貫通), 취급편의성(取扱便宜性)에 대(對)한 상기(上記) 물리적(物理的), 기계적(機械的) 성질(性質)을 고려(考慮)할 때 30%fiber+70%particle과 3%-latex로 된 fiber pot가 좋을 것으로 보였다. 2. Jiffy pot와 마찬가지로 fiber pot에서도 묘목생장(苗木生長)에는 아무런 해(害)가 없었다. 뿌리의 pot벽(壁) 관통능력(貫通能力)은 Jiffy pot보다 fiber pot가 다소 뒤지나 운반(運搬)에 의(依)한 pot의 손상(損傷)은 Jiffy pot보다 약간 더 경미(輕微)했다.

  • PDF

정전 섬유필터 주위의 입자포집 및 거동에 관한 수치해석적 연구 (Numerical analysis of particle behavior around a bipolar charged electret fiber)

  • 안강호
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1509-1517
    • /
    • 1997
  • Charged and uncharged particle motions and collection characteristics around a bipolar charged rectangular shape electret fiber are studied numerically. Particle inertia, fluid drag, Coulomb force and polarization force are considered to predict the particle motion around the electret fiber. The effects of particle sizes, flow velocities, number of charges and polarities are also systematically investigated. For small size particles, the single fiber collection efficiency is greatly dependent on the charge polarity and the number of charges on a particle. However, particles larger than 5.mu.m do not show charging effect on collection efficiencies in the flow velocity ranges from 1.5 cm/s to 150 cm/s when the maximum charges are within +5 to -10. The results show that a strong electric field gradient at the corner of the bipolar charged fiber plays a very important role on collecting particles regardless of its charge polarity because of the polarization force. It also shows that the most penetrating particle size for a single electret fiber decreases as the flow velocity increases and the number of charges of a particle decreases.

한지 슬러시-목재 섬유 또는 목재 파티클 복합재의 인장강도 (Tensile Strength of Composites from Hanji(Korean paper) Sludge Mixed with Wood Fiber or Pariticle)

  • 이필우;손정일;이영규
    • 한국가구학회지
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 1999
  • This research was carried out to investigate the Hanji sludge(black color)-wood fiber and wood particle composited applied by waste sludges arising from the making process of Hanji (Korea paper). In experimental design, four levels of the mixed ratio of Hanji sludge to wood fiber or wood particle(10:90, 20:80, 30:70 and 40:60), three kinds of the resin(PMDI, urea and phenol resin)and three kinds of the specific gravity(0.6, 0.75 and 0.9) were designed to determine the tensile strength of Hanji sludge-wood fiber and wood particle composites. From the results and discussion, it may be concluded as follows: In Hanji sludge-wood fiber and wood particle composites, tensile strengths showed decreasing tendency absolutely by increasing Hanji sludge additive, but clearly increase with the increase of specific gravity. In Hanji sludge-wood fiber composites, there were no differences between PMDI and urea resin-bonded composites, but phenol resin-boned composites were made possibly until the addition of 30% Hanji sludge. On the other hand, Hnji sludge-wood particle composites(SpGr=0.6) have very low tensile strength values. But they were made favorably until the addition of 20% Hanji sludge in Hanji sludge-wood particle composites(SpGr=0.9).

  • PDF

외부 전기장내의 단일 섬유에 대한 먼지층 형사 수치 모사 (Numerical Simulation of Particle Deposition Pattern on Cylindrical Fiber under External Electrical Field)

  • 박현설;정용원;박영옥;이규원
    • 한국대기환경학회지
    • /
    • 제15권1호
    • /
    • pp.41-51
    • /
    • 1999
  • In this study, the two dimensional morphology of particle accumulates on a cylindrical fiber was numerically simulated when a uniform external electric field was present across a cylindrical fiber. In order to investigate the mechanism of linear dendrite formation which is observed under the above electrostatic condition, the electrostatic forces between a newly introduced particle and each deposited particle were calculated and compared with those between the particle and fiber As a result of this study it was found that dielectrophoretic forces between the oncoming particle and fiber play principal roles in linear dendrite formation.

  • PDF

보강재의 형태와 종류가 금속복합재료의 기계적 물성에 미치는 영향 연구 (Effects of Reinforcements Type on Mechanical Properties of Metal Matrix Composites)

  • 남현욱;조종인;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.79-82
    • /
    • 2001
  • In this research, tile effects of reinforcements type on mechanical properties of MMCs were studied. Six kinds preform were fabricated by using Saffil short fiber, HTZ short fiber, $Al_2O_3$ particle, and SiC particle. MMCs were fabricated by using squeeze casting methods. Various tests were conducted to show the effects of reinforcements type on mechanical properties of MMCs. Tensile and compressive properties of MMCs depend on short fiber, however wear properties depend on particle reinforcement. Generally, properties of fiber/particle hybrid MMCs were excellent than those of MMCs with short fiber.

  • PDF

Incremental Damage Mechanics of Particle or Short-Fiber Reinforced Composites Including Cracking Damage

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.192-202
    • /
    • 2002
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with an incremental damage theory of particle or short-fiber reinforced composites. The composite undergoing damage process contains intact and broken reinforcements in a matrix. To describe the load carrying capacity of cracked reinforcement, the average stress of cracked ellipsoidal inhomogeneity in an infinite body as proposed in the previous paper is introduced. An incremental constitutive relation on particle or short-fiber reinforced composites including progressive cracking of the reinforcements is developed based on Eshelby's (1957) equivalent inclusion method and Mori and Tanaka\`s (1973) mean field concept. Influence of the cracking damage on the stress-strain response of composites is demonstrated.

분산형 복합재료의 손상 메커니즘 (Damage Mechanics in Particle or short-Fiber Reinforced Composite)

  • 조영태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.287-292
    • /
    • 1998
  • In particle or short-fiber reinforced composites. cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with the load carrying capacity of intact and broken ellipsoidal inhomogeneities embedded in an infinite body and a damage theory of particle or short-fiber reinforce composites. The average stress in the inhomogeneity represents its load carrying capacity. and the difference between the average stresses of the intact t and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori and Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

섬유/입자 혼합금속복합재료의 인장거동 (Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites)

  • 정성욱;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질 (Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types)

  • 윤형운;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권2호
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF