• Title/Summary/Keyword: Fiber optical sensor

Search Result 725, Processing Time 0.028 seconds

Simulation of Distributed Optical Fiber Sensors Using Spatially-Selective Brillouin Scattering (공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 시뮬레이션)

  • Yun, Seung-Chul;Seo, Min-Sung;Park, Hee-Gap
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.127-135
    • /
    • 2006
  • We implement numerical simulations for the distributed optical fiber sensor system that uses the spatially-selective Brillouin scattering, by treating the superposition of the optical-frequency-modulated pump/probe waves in the time domain. We obtain temporal and spatial distributions of Brillouin gain for various cases. Simulations are applied to the case of concatenated optical fibers of different kinds and the case of distributed temperature along the fiber, which give reasonable results for the distributed sensor. The result of using a triangular wave instead of a sinusoidal one as a modulation waveform shows that the triangular wave modulation has an advantage in spatial resolution.

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

Research on the Mechanical Strength of Fiber Bragg Grating Sensor Adapting to Railway Structure (철도 구조물 적용을 위한 FBG 센서의 기계적 강도에 관한 연구)

  • Yoon, Hyuk-Jin;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2009
  • In order to apply FBG(Fiber Bragg Grating) sensor as one of reliable sensors in the commercial railway structure, the reliability of FBG sensor in the mechanical strength viewpoint have to be confirmed and the maximum strain should surpass the fracture strain of the host structure to measure the measurands until the host structures fail. In this paper, several factors that influence the mechanical failure strength of fiber Bragg grating sensors were analyzed. A set-up for dynamic tensile testing of optical glass fibers with fiber Bragg gratings was made. To increase the FBG failure strength, techniques relying on the H2 loading treatment and stripping methods were established and testified as a result of the tensile strength test of optical fibers.

APPLICATION OF BRILLOUIN SCATTERING SENSOR FOR SLOPE MOVEMENT (광 산란파에 의한 사면거동 예측)

  • Chang, Ki-Tae;Lee, Sang-Deok;Yoo, Byung-Sun
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2004
  • Optical fiber sensors have shown a potential to serve real time health monitoring of the structures. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory and field tests using a novel optical sensor based on Brillouin scattering. One of the advantages of this technique is that the bare fiber itself acts as sensing element without any special fiber processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Civil Engineering Smart Structures.

  • PDF

Development of submersion sensors using multi-mode fibers spliced with a fiber Bragg grating (다중모드 광섬유 융착형 침수 감지 센서 개발)

  • Sohn, Kyung-Rak;Key, Kwang-Hyun;Shim, Joon-Hwan;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.925-931
    • /
    • 2009
  • This paper reports a preliminary experimental investigation and characterization of an optical fiber-based submersion sensor system for applications in water flooding and leakage. The sensor system comprises a multi-mode fiber spliced with fiber Bragg grating and an intensity-based interrogator. Submersion tests were conducted in water-air and Glycerin-air environments. By the refractive index of the fiber-probe surrounding materials, the reflectance and the detecting power level is determined. When the probe is dipped into the water, the optical output power dramatically decreases from -7.5dBm to -17.5dBm. But, the center of Bragg wavelength is not affected in spite of external material changes. Temporal response characteristics of the sensor system is investigated to verify the real-time reaction. When the probe is immersed into the liquid, there is no transition time.

Development of Noncontact Temperature Sensor Using Silver Halide Optical Fiber for Medical Usages (Silver Halide 광섬유를 이용한 의료용 비접촉식 온도 센서 개발)

  • Yoo, Wook-Jae;Cho, Dong-Hyun;Jang, Kyoung-Won;Chung, Soon-Cheol;Tack, Gye-Rae;Lee, Bong-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.337-342
    • /
    • 2006
  • We have developed a noncontact temperature sensor using a silver halide optical fiber. The infrared collimator and focus head are connected both ends of a silver halide optical fiber with SMA connectors and used to collimate radiations of a heat source and to focus them to infrared sensors such as a pyroelectric sensor and a thermopile sensor, respectively. The relation ships between the temperatures of a heat source and the output signals of the infrared sensors are determined to measure the surface temperature of a heat source. The measurable temperature range is from 25 to $60^{\circ}C$. It is expected that a noncontact temperature sensor using a silver halide optical fiber can be developed for medical usages such as temperature monitoring during hyperthermia, cryosurgery, laser surgery and diagnostic procedure based on the results of this study.

Strain Analysis in the Skin and Core Layers of Cross-Ply Composite Laminates Using A-EFPI Optical Fiber Sensor (광섬유 A-EFPI 센서를 이용한 직교적층 복합재료의 표피층 및 내부층의 변형률 해석)

  • 우성충;박래영;최낙삼;권일범
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.15-24
    • /
    • 2004
  • Longitudinal strains (${\varepsilon}_x$) of the core and skin layers in glass fiber reinforced plastic (GFRP) cross-ply composite laminates have been measured using the embedded optical fiber sensor of absolute extrinsic Fabry-Perot interferometer (A-EFPI). Transmission optical microscopy was used to investigate the damage behavior around the A-EFPI sensor. Foil-type strain gauges bonded on both the upper and lower surfaces were used for the measurement of the surface strains. It was shown that values of ${\varepsilon}_x$ in the interior of the skin layer and the core layer measured by embedded A-EFPI sensor were significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of many transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

Fiber-optic Ccurrent Sensor Using a Long-period Fiber Grating Inscribed on a High Birefringent Fiber (복굴절이 큰 광섬유에 제작된 장주기 광섬유 격자를 이용한 광섬유 전류 센서)

  • Lee, Yong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1823-1825
    • /
    • 2007
  • Based on Faraday effect, the variation of current flowing through the conductor can be encoded as that of azimuth angle of light polarization propagating through the fiber coil wound onto the conductor. The amount of current can be obtained by measuring the variation of the light intensity transformed from that of the azimuth angle through a polarization analyzer. In this paper we propose a fiber-optic current sensor system that employs a fiber polarization analyzer as a sensor interrogation device. The fiber polarization analyzer was prepared by inscribing a long-period fiber grating on a high birefringent fiber. At the fixed wavelength of 1522.5 nm, the fabricated fiber device has the polarization extinction ratio of more than 25 dB. The measurement of large current up to 600 Arms was accomplished based on a simple fiber interrogation device and the measurement output of the sensor system showed a good linearity.