• Title/Summary/Keyword: Fiber laser

Search Result 866, Processing Time 0.034 seconds

Laser Scabbling of a Concrete Block Using a High-Power Fiber Laser

  • Oh, Seong Y.;Lim, Gwon;Nam, Sungmo;Kim, TaekSoo;Kim, Ji-Hyun;Chung, Chul-Woo;Park, Hyunmin;Kim, Seonbyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.289-295
    • /
    • 2021
  • A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm·min-1 or 600 mm·min-1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3·min-1 or 227 cm3·min-1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.

Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior

  • Seong Y. Oh;Gwon Lim;Sungmo Nam;Byung-Seon Choi;Taek Soo Kim;Hyunmin Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1988-1993
    • /
    • 2023
  • This experimental study investigated the effect of silica fume mixed in concrete blocks on laser-induced explosion behavior. We used a 5.3 kW fiber laser as a thermal source to induce explosive spalling on a concrete surface blended with and without silica fume. An analytical approach based on the difference in the removal rate and thermal behavior was used to determine the effect of silica fume on laser-induced explosive spalling. A scanner was employed to calculate the laser-scabbled volume of the concrete surface to derive the removal rate. The removal rate of the concrete mixed with silica fume was higher than that of without silica fume. Thermal images acquired during scabbling were used to qualitatively analyze the thermal response of laser-induced explosive spalling on the concrete surface. At the early stage of laser heating, an uneven spatial distribution of surface temperature appeared on the concrete blended with silica fume because of frequent explosive spalling within a small area. By contrast, the spalling frequency was relatively lower in laser-heated concrete without silica fume. Furthermore, we observed that a larger area was removed via a single explosive spalling event owing to its high porosity.

Development of the Thulium Doped Upconversion Fiber Blue Laser (Thulium이 첨가된 Upconversion 광섬유 Blue Laser 개발)

  • 황대석;김규식;허창우;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.439-441
    • /
    • 2003
  • 본 연구에서는 Thulium(Tm$^{3+}$ )이 첨가된 광섬유를 이용, Upconversion blue 레이저의 개발을 위해 fiber 길이 및 파워 변화에 따른 최적화된 설계 기준 값을 찾기 위한 시뮬레이션 코드를 개발하고 그 해석을 행하였다. 1140nm의 여기광원을 이용하여 여기하였을 때 광섬유 길이 40cm에서 약 100mW의 발진 문턱값을 갖으며 1W의 여기 광원에 대해 60mW의 출력 특성이 예상된다.

  • PDF

9.6 dB Gain at a 1310 nm Wavelength for a Bismuth-doped Fiber Amplifier

  • Seo, Young-Seok;Lim, Chang-Hwan;Fujimoto, Yasushi;Nakatsuka, Masahiro
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.63-66
    • /
    • 2007
  • A 9.6 dB gain is observed at 1310 nm in a 5.0 cm bismuth-doped silica fiber. A launched pump power of 100 mW was obtained using an 810-nm laser diode. We demonstrated the simultaneous optical amplification at two wavelengths near second telecommunication windows, which is the range of zero-dispersion for silica fibers.

Characterization of wavelength dependent birefringence inside the ring type liber cavity using the polarization dependence of laser Outputs

  • Kim, Ho-Young;Kang, Kwang-Yong;Kim, Kyoung-Hon
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 2002
  • Using the polarization dependence of laser output powers, we measured the characteristics of the birefringence, such as the magnitude of phase retardation, the ellipticity, and the off axis angle to the fiber optical axis, inside the ring type fiber laser cavity.

Linear interrogation of fiber Bragg grating sensor array using time-delayed quadrature sampling technique (시간지연 샘플링을 이용한 광섬유 격자 센서어레이의 선형 복조)

  • 김종섭;송민호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • A fiber laser of which wavelength was scanned by an intra-cavity FP (Fabry-Perot) filter was used to interrogate a fiber Bragg grating strain sensor array. We calculated the wavelength variation of the fiber laser using quadrature signal processing with an unbalanced M/Z (Mach-Zehnder) interferometer and time-delayed sampling technique. The calculated wavelengths are mapped to corresponding temporal reflection peaks from the sensor array, which enables more accurate and stable interrogation without the problems caused by the FP filter's nonlinear characteristics. Wavelength resolution of ∼20 pm was obtained in our experimental setup, which could have been greatly enhanced with faster phase modulation.

Porous Bio-degradable Nano-fiber Machining by Femtosecond Laser (다공성 친바이오 나노섬유 극초단 레이저 가공특성 연구)

  • Choi, Hae-Woon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.339-345
    • /
    • 2012
  • Electrospun meshed poly-caprolactone PCL was patterned by femtosecond laser with linear grooves. As parametric variables, focus spot size, pulse energy, and scanning speed were varied to determine the affects on groove size and the characteristics of the electrospun fiber at the edges of these grooves. The femtosecond laser was seen to be an effective means for flexibly structuring the surface of ES PCL scaffolds and the width of the ablated grooves was well controlled by laser energy and focus spot size. The ablation threshold was measured to be $14.9J/cm^2$ which is a little higher than other polymers. These affects were attributed to optical multiple reflections inside nano-fibers. By the laser-induced plasma at higher pulse energies, some melting of fibers was observed.

The Variation of Radiation Transmittance by the cw 1.07 ㎛ Fiber Laser and Water Aerosol Interaction

  • Koh, Hae Seog;Shin, Wan Soon;Jeon, Min Yong;Park, Byung Suh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 2012
  • Among the atmospheric effect of laser propagation, the variations of the radiation transmittance by water aerosol evaporation have quantitatively been investigated. When the aerosol was exposed by a 1.07 ${\mu}m$ cw fiber laser, the increased amount of the transmittance variation was a maximum of 19.1% and the volume concentration variation of aerosol was observed as an increasing of laser intensity. Also, significant irregularity of refractive index was not found in the heated area during the continuous laser heating.

Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization (나노섬유의 특성분석을 위한 레이저 접촉각 측정기의 효율성 연구)

  • 신경인;안선훈;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.554-559
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. The instrument may have a possibility to characterize newly developed nano-fibers. When the laser beam impinges on an edge of an interface of liquid and solid, projected beam were split across and made two straight lines on a tangent screen. From the result, it could measure the contact angle directly by reading the angle between two split beams. The purpose of this study was to prove reliability and reproducibility of the contact angle measurement instrument by laser beam projection compare to the conventional one by microscope through the comparative experiment and questionnaire. Test samples were selected by consideration of hydrophilic and hydrophobic, such as nylon 6 and polypropylene, respectively. The laser contact angle measurement has accurate, fast and convenient method to measure contact angle, and it can be a unique method to characterize nano-fibers.