• Title/Summary/Keyword: Fiber laser

Search Result 866, Processing Time 0.163 seconds

Temperature Distributions of the Lumbar Intervertebral Disc during Laser Annuloplasty : A Cadaveric Study

  • Lee, Min Hyung;Kim, Il Sup;Hong, Jae Taek;Sung, Jae Hoon;Lee, Sang Won;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.559-563
    • /
    • 2016
  • Objective : Low back pain, caused intervertebral disc degeneration has been treated by thermal annuloplasty procedure, which is a non-surgical treatement. The theoretical backgrounds of the annuloplasty are thermal destruct of nociceptor and denaturization of collagen fiber to induce contraction, to shrink annulus and thus enhancing stability. This study is about temperature and its distribution during thermal annuloplasty using 1414 nm Nd : YAG laser. Methods : Thermal annuloplasty was performed on fresh human cadaveric lumbar spine with 20 intact intervertebral discs in a $37^{\circ}C$ circulating water bath using newly developed 1414 nm Nd : YAG laser. Five thermocouples were attached to different locations on the disc, and at the same time, temperature during annuloplasty was measured and analyzed. Results : Thermal probe's temperature was higher in locations closer to laser fiber tip and on lateral locations, rather than the in depth locations. In accordance with the laser fiber tip and the depth, temperatures above $45.0^{\circ}C$ was measured in 3.0 mm depth which trigger nociceptive ablation in 16 levels (80%), in accordance with the laser fiber end tip and laterality, every measurement had above $45.0^{\circ}C$, and also was measured temperature over $60.0^{\circ}C$, which can trigger collagen denaturation at 16 levels (80%). Conclusion : When thermal annuloplasty is needed in a selective lesion, annuloplasty using a 1414 nm Nd : YAG laser can be one of the treatment options.

Study on the Formation Mechanism of Electroless Plating Seeds on Polymer by Laser (레이저에 의한 폴리머상의 무전해 도금 시드 형성 메커니즘 연구)

  • Paik, Byoung-Man;Lee, Jae Hoon;Shin, Dong-Sig;Lee, Kun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • The LDS(Laser Direct Structuring) is one of the new direct writing methods to fabricate conductive patterns by energy beam. It uses thermoplastic polymers with an additive compound that serves as plating seed after the activation by laser. The advantages of LDS include the miniaturization of electrical components, design flexibility, and a reduced number of production steps. The purpose of this study is to investigate the fundamental mechanism for LDS and the characteristics of conductive patterns by laser parameters. These results were studied by SEM, EDX, and XPS analysis. We have used a 20W pulse-modulated fiber laser and copper electroless plating to fabricate conductive patterns on polymer. The result showed that electroless copper plating seed caused the laser cracking of additive compound. In particular, the additive compound contained in copper metal oxides atoms will be changed to copper metal elements. Also, the characteristics of conductive patterns were dependent on laser parameter, especially laser fluence.

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF

Quasi-continuous-wave Yb-doped Fiber Lasers with 1.5 kW Peak Power (첨두 출력 1.5 kW급 준연속 이터븀 첨가 광섬유 레이저)

  • Jeon, Minjee;Jung, Yeji;Kim, Jiwon;Jeong, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • High-power quasi-continuous-wave (qcw) operation in Yb-doped double-clad fiber lasers with near-diffraction-limited quality of the output beam is reported. Based on numerical simulation, we built a simple, all-fiberized Yb fiber laser, and a fiber-based master-oscillator power amplifier (MOPA). Both laser systems have successfully produced qcw output with average power greater than 150 W at 1080 nm and 10 ms pulse duration at 10 Hz repetition rate, corresponding to a peak power greater than 1.5 kW for 205 W of pump power at 976 nm. Laser performance, including beam quality and slope efficiency, was characterized in both configurations. Prospects for power scaling and applications are discussed.

Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy (다이오드 레이저를 이용한 연소진단기법)

  • Cha, Hak-Joo;Kim, Min-Soo;Shin, Myung-Chul;Kim, Se-Won;Kim, Hyuck-Joo;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF

Technology of the End Cap Laser Welding for Irradiation Fuel Rods (조사연료봉 봉단마개의 레이저용접기술)

  • 김수성;이정원;고진현;이영호
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.20-25
    • /
    • 2003
  • Various welding methods such as Gas Tungsten Arc Welding(GTAW), magnetic force electrical resistance welding and Laser Beam Welding(LBW) are now available for end cap closure of nuclear fuel rods. Even though the resistance and GTA welding processes are widely used in manufacturing commercial fuel rods, they can not be recommended for the remote seal welding of fuel rods in the hot cell Facility due to the complexity of the electrode alignment, the difficulty in replacing parts in a remote manner and the large heat input for the thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for the end cap welding of irradiation fuel rods in the hot cell. The remote laser welding apparatus in the hot cell Facility was developed using a pulsed Nd:YAG laser of 500 watt average power with an optical fiber transmission. The weldment quality such as microstructure and mechanical strength was satisfactory. The optimum conditions of laser welding for encapsulating irradiation fuel rods in the hot cell were obtained.

A study on gold wire-thin film welding using laser (레이저를 이용한 골드 와이어-박막 용접에 관한 연구)

  • Park, K.W.;Na, S.J.
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.108-111
    • /
    • 2006
  • Recently, mobile information devices, such as cellular phone, PDA(Personal Digital Assistant, PDA) are getting smaller and thinner. Accordingly, ultra precision welding technology is required to manufacture the high performance system for use in the telecommunication industry. In this study, we propose the laser micro welding process. Using ytterbium fiber laser, a wide range of experiments have been carried out for the gold wire-to-gold thin film welding.

  • PDF

The Study for Improving the Weldability of Pure Titanium Sheet by Using Fiber Laser - The Effect of Shielding Gas Nozzle Variable - (파이버 레이저를 이용한 순 티타늄 박판의 용접특성 향상을 위한 연구 - 실드가스 노즐변수의 영향 -)

  • Kim, Jong-Do;Kim, Ji-Sung
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.6-12
    • /
    • 2016
  • This study was performed bead welding of pure titanium by using fiber laser. Since titanium is very sensitive to oxidation and nitriding during welding, it is important to compose the shielding equipment compared with different material. Thus side and coaxial shield nozzle, rail and chamber type shielding equipment are widely used to protect effectively the weld during welding. Experiments were performed by changing nozzle angle and distance using side and coaxial shield nozzle. The bead colors of gold, brown, blue, purple and yellowish white were obtained by changing variables of shield nozzle, and then its weldability was investigated. As experiment result, sound and not brominated beads were formed when side nozzle angle and distance were respectively $45^{\circ}$ and 10 mm.

Weld Quality Quantification through Chaotic Analysis (카오스 분석을 통한 용접 품질 정량화)

  • Cho, Jung-Ho;Farson, Dave;Kim, Cheol-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.72-76
    • /
    • 2010
  • Irregular fluctuation of penetration depth in CW single mode fiber laser welding is analyzed statistically and chaotically. Among various chaos theories, one of the basic concept referred as Lyapunov exponent is applied to the analysis to quantify the irregularity of penetration. Especially, maximal Lyapunov exponent (MLE) is known as the representative value indicating chaotic degree of the system dynamics. MLE calculation method of experimental data is applied to longitudinal spiking defect in fiber laser weld. Laser power modulation is suggested as a remedy then the computed MLE value is compared to CW case. It is shown that the adoption of chaos theory, MLE computation, can be used as a measurement standard to prove the validity of the solutions to prevent the unexpected chaotic behavior of weld through this work.

Nano-structuring of Transparent Materials by Femtosecond Laser Pulses

  • Sohn, Ik-Bu;Lee, Man-Seop;Chung, Jung-Yong;Cho, Sung-Hak
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Using tightly focused femtosecond laser pulses, we produce an optical waveguide and optical devices in transparent materials. This technique has the potential to generate not only channel waveguides, but also three-dimensional optical devices. In this paper, an optical splitter and U-grooves, which are used for fiber alignment, are simultaneously fabricated in a fused silica glass using near-IR femtosecond laser pulses. The fiber aligned optical splitter has a low insertion loss, less than 4㏈, including an intrinsic splitting loss of 3㏈ and excess loss due to the passive alignment of a single-mode fiber. Finally, we demonstrate the utility of the femtosecond laser writing technique by fabricating gratings at the surface and inside the silica glass.