• Title/Summary/Keyword: Fiber distribution

Search Result 985, Processing Time 0.031 seconds

ULTRAVIOLET MICROSCOPIC STUDY ON LIGNIN DISTRIBUTION IN THE FIBER CELL WALL OF BCTMP

  • Seung-Lak YooN;Yasuo KOJIMA;Lee, Seon-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.375-380
    • /
    • 1999
  • In order to improve the optical properties of high yield pulp, bleached chemi-thermo-mechanical pulp (BCTMP) was produced from CTMP of Betula maximowicziana Regel by two staged ozone-hydrogen peroxide bleaching. This pulp was used for the evaluation of the improvement of optical properties, chemical characteristics of lignin in fiber, and the relationship between lignin and optical properties in fiber cell wall. By hydrogen peroxide treatment, the brightness was improved, but the post color number (PC No.) was not. There was little improvement on optical properties by ozone treatment, but his could be solved by using two staged ozone-hydrogen peroxide bleaching. The hydrogen peroxide treatment did not make nay change on chemical characteristics of lignin in cell wall, but by ozone treatment, it was found that the non-aromatic conjugated structure was existed in the surface of cell wall, but this could be removed by hydrogen peroxide treatment in two staged ozone-hydrogen peroxide treatment. Therefore, the optical properties was significantly improved due to the removal of non-aromatic conjugated structure.

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

Analysis of Anisotropic Characteristic in Fiber Reinforced Polymer for the Knee Brace Using the Eddy Current Inspection (와전류 탐상기법을 이용한 무릎보조기용 섬유강화 폴리머의 이방특성 분석)

  • Kim, Cheol-Woong;Park, Cheon-Woong;Shin, Yong-Hoon;Seo, Hae-Young;Lee, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1533-1538
    • /
    • 2008
  • The development of new material systems like Carbon Fiber Reinforced Polymer (CFRP) places ever higher demands on the techniques for non-destructive material characterisation. Image-producing eddy current methods also need to satisfy these demands. Eddy-current imaging of FRP is based on the anisotropic electrical properties of the material investigated. Significant differences in conductivity between carbon fibres, polymer matrix and integrated functional components can be found. The availability of high-resolution sensors enables access to the local distribution of the electromagnetic properties. The static and dynamic procedures for isolating influential characteristics, already in use in eddy-current technology, can now be supplemented by topographical images. The precondition for a successful implementation of the eddy-current procedure is a deeper understanding of the image-generating process which allows correct interpretation of the images obtained.

  • PDF

3-D Flow Analysis for Compression Molding of Fiber-Reinforced Polymeric Composites with Ratio of Extensional & Shear Viscosity (인장 및 전단점성비를 고려한 섬유강화 플라스틱 복합재의 압축성형에 있어서 3차원 유한요소해석)

  • 조선형;윤두현;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • The compression molding is widely used in the automotive industry to produce products that are large, thin, lightweight and stiff. The molded product is formed by squeezing a fiber-reinforced plastic composites. During a molding process of fiber reinforced thermoplastic composites, control of filling patterns in mold, orientation and distribution of fibers are needed to predict the effects of molding parameters on the flow characteristics. It is the objective of this paper to develop an isothermal compression molding simulation that can handle both thin and thick charges and motion of the flow front, and can predict pressure distributions and accurate velocity gradients. The composites are treated as an incompressible Newtonian fluid. The effects of slip parameter $\alpha$ and extensional/shear viscosity ratio $\zeta$ on the mold filling parameters are also discussed.

  • PDF

Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates - (소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 -)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

A Study on the Fracture Behavior of Laminated Carbon/Epoxy Composite by Acoustic Emission (음향방출법을 이용한 적층복합재료의 파괴거동 연구)

  • Oh, Jin-Soo;Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.326-333
    • /
    • 2010
  • In this study, DAQ and TRA modules were applied to the CFRP single specimen testing method using AE. A method for crack identification in CFRP specimens based on k-mean clustering and wavelet transform analysis are presented. Mode I on DCB under vertical loading and mode II on 3-points ENF testing under share loading have been carried out, thereafter k-mean method for clustering AE data and wavelet transition method per amplitude have been applied to investigate characteristics of interfacial fracture in CFRP composite. It was found that the fracture mechanism of Carbon/Epoxy Composite to estimate of different type of fractures such as matrix(epoxy resin) cracking, delamination and fiber breakage same as AE amplitude distribution using a AE frequency analysis. In conclusion, the presented results provide a foundation for using wavelet analysis as efficient crack detection tool. The advantage of using wavelet analysis is that local features in a displacement response signal can be identified with a desired resolution, provided that the response signal to be analyzed picks up the perturbations caused by the presence of the crack.

Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

  • Kim, Dae Ho;Kim, Doo Won;Kim, Bo-Hye;Yang, Kap Seung;Lim, Yong-Kyun;Park, Eun Nam
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.104-108
    • /
    • 2013
  • The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply (스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과)

  • Park, Seok Joo;Lee, Dong Geun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.563-571
    • /
    • 2006
  • Vapor grown carbon fiber (VGCF) nano-materials such as carbon nanotubes and carbon nanofibers were directly grown on the surface of the stainless steel mesh pre-treated by reduction. The reduction of the stainless steel mesh by hydrogen formed small catalytic particles and large particles with bi-modal distribution on the metal surface. When the VGCFs were synthesized on the reduced mesh, carbon nanotubes (CNTs) were dominantly grown from the small catalytic particles without supplying hydrogen gas. However, carbon nanofibers (CNFs) were dominantly grown from the large catalytic particles with hydrogen.

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.63-69
    • /
    • 2002
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The "stiff" fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of "stiff" fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept. apply this concept.