• Title/Summary/Keyword: Fiber diameter

검색결과 800건 처리시간 0.362초

Analysis of Light Traits in a Solar Light-collector Device and its Effects on Lettuce Growth at an Early Growth Stage (태양광 집광장치의 광 특성분석 및 유묘기 상추의 생장에 미치는 영향)

  • Lee, Sanggyu;Lee, Jaesu;Won, Jinho
    • Journal of Environmental Science International
    • /
    • 제28권11호
    • /
    • pp.1019-1025
    • /
    • 2019
  • The aim of this study was to analyze the light traits in a solar light-collector device and its effects on lettuce growth at an early growth stage. The three hyper parameters used were the reflector diameter (2 cm and 4 cm), coating inside the reflector (chrome-coated, non-coated) and distance from the light fiber (15 cm and 20 cm). The results showed that light efficiency, which is the ratio of light intensity inside the fiber to the solar intensity, improved by 41.1 % when using a 2 cm diameter chrome-coated reflector at a distance of 15 cm from the light fiber; whereas it only improved by 20.6% when a non-coated reflector was used. As the reflector size was increased to 4 cm, the light efficiency for the coated and non-coated reflectors increased by 28.5 % and 26.4 %, respectively, hence, no significant difference was observed. When the light fiber was placed at a distance of 20 cm, the increase in light efficiency with coating treatment was 8 % higher than without coating treatment. We also compared the efficiency of light-fiber treatment with that of LED treatment in our lettuce nursery, and observed that the plants exhibited better growth with light-fiber treatment. We observed an average increase of 1.7 cm in leaf height, $7cm^2/plant$ increase in leaf area, and 32 mm increase in root length upon light-fiber treatment as opposed to those observed with LED treatment. These findings indicate that the collector light-fiber is economically feasible and it improves lettuce growth compared with the LED treatment.

Composition and Peinforcing Effect of Remolded Short Fiber Reinforced Clay (재성형된 단섬유 보강점토의 구성과 보강효과)

  • 박영곤;장병욱
    • Journal of the Korean Geotechnical Society
    • /
    • 제16권6호
    • /
    • pp.87-95
    • /
    • 2000
  • A series of consolidated undrained triaxial compression testes were performed to increase field applications of soil admixtures mixed with short fiber. Kaolin clay and three types of fiber were selected and auto cutter was used to obtain reliable length of fibers. Remolded soil specimens were tested for obtaining the basic data to be applied to the reinforcement of soft clay, embankment or barrier and clay liner of wastes landfill etc. Conversion equations from weight to volume of clay mixed with short fiber are introduced and relationships between fiber content and fiber concentration are derived. It is found that reinforcing effect by aspect ratio and mixing ratio of short fiber decreases as confining pressure increases. The best efficient reinforcing effect is given at the aspect ratio of 80~120 and the fiber content of 1.2%~2.4% and the fiber diameter of 0.27mm.

  • PDF

Dissolution Technology Development of E-Glass Fiber for Recycling Waste of Glass Fiber Reinforced Polymer

  • Lee, Suyeon;Kim, Woo Sik
    • Journal of the Korean Ceramic Society
    • /
    • 제56권6호
    • /
    • pp.577-582
    • /
    • 2019
  • Recently, E-glass fiber is the one of most widely used ceramic fiber for aerospace fields. Recycling technology for waste of wind power blades is arising issue for reasons of low manageability and high cost of wastes. Though glass fiber is perfectly dissolved in hydrofluoric acid, low cost for recycling and harmless to human is important for recycling of blades. Chemically melted glass fiber will be used as different purpose like accelerator of hardening for shotcrete. In this study, dissolution process of glass fiber is tested in NaOH solution at low temperatures. In addition, difference in diameter reduction of glass fiber is observed by various alkali concentration and reaction times, treatment temperatures using FE-SEM.

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.

Evaluation of the Fineness of Degummed Bast Fibers

  • Wang, H.M.;Wang, X.
    • Fibers and Polymers
    • /
    • 제5권3호
    • /
    • pp.171-176
    • /
    • 2004
  • Fiber fineness characteristics are important for yarn production and quality. In this paper, degummed bast fibers such as hemp, flax and ramie have been examined with the Optical Fiber Diameter Analyzer (OFDA100 and OFDA2000) systems for fiber fineness, in comparison with the conventional image analysis and the Wira airflow tester. The correlation between the results from these measurements was analysed. The results indicate that there is a significant linear co-relation between the fiber fineness measurement results obtained from those different systems. In addition, the mean fiber width and its coefficient of variation obtained from the OFDA100 system are smaller than those obtained from the OFDA2000 system, due to the difference in sample preparation methods. The OFDA2000 system can also measure the fiber fineness profile along the bast fiber plants, which can be useful for plant breeding.

Characteristics of Elastics Waves of Fiber-Reinforced Plastic with Localized Heat Damage (국부 열손상을 받은 복합재료의 탄성파특성)

  • 남기우;김영운
    • Journal of Ocean Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.48-53
    • /
    • 2002
  • Fiber-reinforced composites are extensively used in electronic, ship and aerospace applications due to their high strength and high toughess. In these applications, they are often subjected to localized heat damage due to various sources. In order to ensure their reliability, it is important to predict their residual properties using nondestructive evaluation thchniques. Fabric fiber composite specimens were manufactured with six layers of the glass-fiber prepreg and the carbon-fiber prepreg, respectively. The specimens were subjected to a localized heat damage using a heated copper tip with a diameter of 10mm at 35$0^{\circ}C$(CFRP) and 30$0^{\circ}C$(GFRP), respectively. The specimens were then subjected to tension tests while acoustic emission (AE) activities of specimens were collected. The AE activity of all specimens showed three types of distinct frequency regions. Those are matrix cracking, failure of the fiber/matrix interface and fiber breakage.

Preparation of Carbon Fiber from Heavy Oil Residue through Bromination

  • Park, Young-Ok;Yang, Kap-Seung
    • Fibers and Polymers
    • /
    • 제2권4호
    • /
    • pp.178-183
    • /
    • 2001
  • A pitch precursor for a general purpose carbon fiber was prepared by condensation of pyrolized fuel oil (petroleum residual oil) with bromine under nitrogen blowing. such a condensation raised the softening point of the pitch from 4$0^{\circ}C$ to $265^{\circ}$ with a yield of 43%. The pitch precurosr showed an enhanced aromaticity and enlarged molecular size, which led to a reduction in molecular mobility and optical isotropy. The precursor was spun into fibers of $20\mu\textrm{m}$ diameter at a take-up speed of 700m/min. The fiber was stepwise stabilized in air and carbonized in Ar gas to obtain an isotropic carbon fiber. The carbon fiber exhibited tensile strengths of 500-800 ㎫though the fiber was formed via a crude method. The electric conductivity of the carbon fiber was relatively high, 2.2$\times$$10^2$S/cm, sufficient to be used as electrode materials.

  • PDF

Effects of Rice Bran Fiber on Quality of Low-fat Tteokgalbi

  • Choi, Yun-Sang;Choi, Ji-Hun;Han, Doo-Jeong;Kim, Hack-Youn;Lee, Mi-Ai;Lee, Eui-Soo;Jeong, Jong-Youn;Paik, Hyun-Dong;Kim, Cheon-Jei
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.959-964
    • /
    • 2008
  • This study evaluated the effects of dietary fiber extracted from rice bran (rice bran fiber) on the quality of low-fat tteokgalbi. The controls were formulated with 20% added fat. Test samples of tteokgalbi were produced with 5 different formulations containing 1, 2, 3, 4, and 5% rice bran fiber as a fat replacer, in addition to 10% fat. The control had the highest fat content, energy value, cooking loss, reduction in diameter, reduction in thickness, CIE $L^*$-value (lighness), and color of sensory properties. The tteokgalbi containing rice bran fiber had higher moisture, protein, ash, and carbohydrate contents than the controls. Tteokgalbi with 3% rice bran fiber had the lowest cooking loss, reduction in diameter, and reduction in thickness. Meat products containing 2 and 3% rice bran fiber had a higher overall acceptability similar to the high fat control.

A Development of Small-diameter Composite Helical Spring Structure for Reinforcement of Fiber Splice (광섬유 융착 부위 중접용 미소 직경 복합재료 스프링 구조물 개발)

  • 윤영기;정승환;이우일;이병호;윤희석
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.26-32
    • /
    • 2003
  • Optical fibers, for splice, are stripped of their plastic coatings with a plastic stripper and cut off at the end. Therefore, stripped fibers often receive accidental damages and sustain small flaws or cracks. As a result, the breaking strength of a fiber splice made under normal conditions is reduced to about 0.4∼1 ㎏ on the average, nearly one-tenth of the fiber's strength. This makes it necessary to reinforce the splice. One of the most practical and reliable methods for optical fiber splicing is fusion splicing, comprising the steps of tripping the plastic coatings from the two fiber ends to be splice, placing the two bare fiber ends in an end-to-end position, and of fusion splicing, such as are fusion. Generally, steel bar (SB) sleeve is used to reinforce this fusion-splicing region. However, this type of sleeve has a critical defect to keep optical lose after bent by a sudden load. New type of composite spring (CS) sleeve is developed to make up for the weak points in the SB sleeve. This sleeve has an effect on restoration to the original state after eliminating the bending load. The optical spectrum analyzes results show the availability of reinforcement for the fusion splicing optical fiber using small diameter composite springs under the various loading conditions.

Influences of Air Cavity on the Sensitivity of a Mandrel Type fiber Optic Acoustic Sensor (Air cavity가 맨드릴형 광-음향센서의 감도특성에 미치는 영향)

  • 임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권2호
    • /
    • pp.3-7
    • /
    • 2000
  • This paper is on the sensitivity characteristics of a concentric composite mandrel type fiber optic acoustic sensor with inclusion of an air cavity With the finite element method, we have analyzed sensitivity variation of the sensor in relation to its geometrical factors such as thickness of the air cavity, thickness of the foaming layer, and the ratio of inner diameter/outer diameter of the mandrel. Results of the analysis suggest a thicker air cavity, a thinner foaming layer, and a smaller ratio of the inner diameter/outer diameter of the mandrel to be desirable for higher sensitivity. The sensor structure designed with the above rules provides the sensitivity of about 0.8dB higher than that of a normal concentric composite mandrel sensor without the inherent air cavity.

  • PDF