• Title/Summary/Keyword: Fiber cross section

Search Result 239, Processing Time 0.026 seconds

A Study on Preparation and the Standard Recipe of Premixed Gam-Injulmi Rice Cake (Premix 감인절미 제조 및 표준 Recipe에 관한 연구)

  • 김경자;오옥자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.1
    • /
    • pp.47-55
    • /
    • 1997
  • This study aims to know what the physicochemical properties and physical properties of the Korean traditional rice cake injulmi made from persimmon powder and glutinous rice(powder), and to come up with a standard recipe of it with the premixed powder of persimmon and glutinous rice. Cooked rice powder with 9 different levels of persimmon in cooling dough(75, 100 and 150${\mu}{\textrm}{m}$ power with each 20, 40, and 60%) was tested for rheological parameters, the rate of swelling, degree of gelatinization, sensory evaluation, and the observation of cross section used to electronmicroscope. 1. sensory evaluation conducted by 20 university students as panelists showed that mixed glutinous rice powder and persimmon powder lost their regular forms. increase in persimmon powder content increased a thin layer of starch granule, presumably due to sugar and fiber in the mixed persimmon powder granule. 3. In cooking the rice cake with 20~60% of persimmon, it showed 6.3 to 5.5 pH. 4. Quantitative description analysis conducted by 20 university student s panelists showed that sample that sample C was preferred among 9 samples. From these results, it was concluded that glutinous rice cake cooked with 20% of persimmon powder was quiet acceptable. Optimum cooking condition for the glutinous rice with persimmon powder rice cake was 30min of cooking time and 25$0^{\circ}C$ of cooking temperature with gas oven.

  • PDF

Ultrastructure of the Fertilized Egg Envelope from Pseudobagrus fulvidraco, Bagridae, Teleostei

  • Sohn, Joon Hyung;Kwon, Ohyun;Kim, Dong Heui
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.150-154
    • /
    • 2016
  • The ultrastructure of fertilized egg envelope from Pseudobagrus fulvidraco belongs to Bagridae was investigated using light and electron microscopes. The fertilized egg was compressed spherical, light-yellowish, demersal, and adhesive. The size of fertilized egg is about $1.85{\pm}0.13mm$, perivitelline space is not well developed, and there were no appendicular structures on the outer surface of egg envelope and oil droplets in vitelline membrane under light microscope. The micropyle was located in the animal pole of fertilized egg. Adhesive reticular fiber was covered fertilized egg envelope. The thickness of egg envelope was about $3.7{\sim}4.2{\mu}m$, and the egg envelope consisted of two layers: an outer, electron-dense adhesive fibers layer and an simple inner layer with pore. Therefore, the ultrastructure of cross section of the fertilized egg envelope showed species specificity, but studies on the other species belongs to Bagridae were need to get correct information about common traits in family.

Effect of Powder Morphology on the Deposition Quality for Direct Laser Melting (Direct Laser Melting 공정시 분말 형태가 적층 품질에 미치는 영향)

  • Lee, S.H.;Kil, T.D.;Han, S.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • Direct laser melting(DLM) is an additive manufacturing process that can produce parts by solidification of molten metallic powder layer by layer. The properties of the fabricated parts strongly depend on characteristics of the metallic powder. Atomized powders having spherical morphology have commonly been used for DLM. Mechanical ball-milling is a powder processing technique that can provide non-spherical solid powders without melting. The aim of the current study was to investigate the effect of powder morphologies on the deposition quality in DLM. To characterize the morphological effect, the performances of spherical and non-spherical powders were compared using both single- and multi-track DLM experiments. DLM experiments were performed with various laser process parameters such as laser power and scan rate, and the deposition quality was evaluated. The surface roughness, cross-section bead shape and process defects such as balling or non-filled area were compared and discussed in this study.

Study on Robot based Remote Laser Welding (로봇 기반 원격 레이저 용접에 관한 연구)

  • Kang, Hee-Shin;Suh, Jeong;Cho, Taik-Dong
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • Remote Laser welding technology for manufacturing automotive body is studied. Laser welding and industrial robot systems are used for the robot based laser welding system. The laser system is used 1.6kW Fiber laser(YLR-1600) of IPG. The robot system is used HX130-02 of Hyundai Heavy Industry(payload : 130kg). The robot based laser welding system is equipped with laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc are butt and lapped joints. The quality test of the laser welding are through the observation the shape of bead on plate and cross-section of welding part. During past three years the laser system, 4kW Nd:YAG laser (HL4006D) of Trumpf was used and the robot system, IRB6400R of ABB (payload:120kg) was used. The new laser source, robot and laser scanner system are used to increase the processing speed and to improve the process efficiency. This paper introduces the robot based remote laser welding system to resolve the limited welding speed and accuracy of the conventional laser welding system.

  • PDF

Physicochemical Properties of Rice Extrudate with Added Ginger Powder by the Response Surface Regression Analysis (반응 표면 분석에 의한 생강 분말을 첨가한 쌀 압출 성형물의 이화학적 성질)

  • 고광진
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.178-188
    • /
    • 1993
  • This research was attempted to investigate changes in physicochemical properties of rice extrudate with added ginger powder extruded by single screw extruder. Graphic three dimensional analysis on response surface regression was used to evaluate effects of extrusion variables on quality factors of the extrudate according to two independent variables, ginger consent 0∼12%, moisture content 14∼26%. The summarized results are as follows : 1) Regarding proximate composition of rice extrudate with added ginger powder, as ginger powder content of raw material Increased, crude tat, crude protein, crude ash and crude fiber increased, while soluble nitrogen free extract decreased. 2) Graphic three dimensional analysis on response surface regression was conducted for each dependent variable which revealed statistically significant relationship with independent variables, 0∼120A ginger and 14∼26% moisture content. Expansion ratio had a critical point as moisture content changed. As ginger and moisture content Increased, bulk density, break strength and water absorption Index Increased, while water solubility Index decreased. The predicted maximum degree of gelatinization in 6.15% ginger and 15.56% moisture content is 88.27%, and lightness decreased as ginger content Increased. According to the microstructure for the cross section of extrudate obsorbed with image analyzer, air cell number and perimeter revealed saddle point, meanwhile total area and fractarea of air cell had critical points as moisture content changed. In view of the results, quality of rice extrudate with added ginger powder was optimum when rice flour was fed to the extruder with 2∼7% singer powder and 15∼20% moisture content.

  • PDF

Study on Quality of Yukwa by Substitution with Resistant Starch (저항전분 대체에 따른 유과의 품질에 관한 연구)

  • Lee, Mi Hye;Oh, Myung Suk
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.5
    • /
    • pp.407-417
    • /
    • 2016
  • Effects of resistant starch as a functional substitute on the quality of Yukwa were determined. Replacement ratios of resistant starch were 2, 4, and 6% of glutinous rice flour. Regarding pasting properties of Yukwa dough replaced with resistant starch, initial pasting temperature significantly increased and peak viscosity significantly decreased with increasing resistant starch. The moisture contents of bandegi and Yukwa base replaced with resistant starch were higher than that of the control. The expansion ratio of Yukwa base replaced with resistant starch significantly decreased with increasing resistant starch, and there were no significant differences in the oil absorption ratio. Lightness (L) of Yukwa base replaced with resistant starch increased significantly with increasing resistant starch. Appearance of Yukwa base replaced with resistant starch showed a shortened length and increased width with increasing resistant starch, and cross-section showed an oval shape, fine air cell distribution, and increased outer layer thickness. Hardness and peak number increased significantly with increasing resistant starch. The overall acceptability of Yukwa base replaced with 6% resistant starch was the highest among the samples, but the result was not significant. The above results show that resistant starch substitution in Yukwa improved the texture and further could improve health functionality due to its dietary fiber content. Resistant starch was appropriate as a 6% replacement for glutinous rice flour in Yukwa.

Prediction of curvature ductility factor for FRP strengthened RHSC beams using ANFIS and regression models

  • Komleh, H. Ebrahimpour;Maghsoudi, A.A.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.399-414
    • /
    • 2015
  • Nowadays, fiber reinforced polymer (FRP) composites are widely used for rehabilitation, repair and strengthening of reinforced concrete (RC) structures. Also, recent advances in concrete technology have led to the production of high strength concrete, HSC. Such concrete due to its very high compression strength is less ductile; so in seismic areas, ductility is an important factor in design of HSC members (especially FRP strengthened members) under flexure. In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) and multiple regression analysis are used to predict the curvature ductility factor of FRP strengthened reinforced HSC (RHSC) beams. Also, the effects of concrete strength, steel reinforcement ratio and externally reinforcement (FRP) stiffness on the complete moment-curvature behavior and the curvature ductility factor of the FRP strengthened RHSC beams are evaluated using the analytical approach. Results indicate that the predictions of ANFIS and multiple regression models for the curvature ductility factor are accurate to within -0.22% and 1.87% error for practical applications respectively. Finally, the effects of height to wide ratio (h/b) of the cross section on the proposed models are investigated.

Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending

  • Elamary, Ahmed S.;Abd-ELwahab, Rafik K.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.937-949
    • /
    • 2016
  • Fiber reinforced polymer (FRP) applications in the structural engineering field include concrete-FRP composite systems, where FRP components are either attached to or embedded into concrete structures to improve their structural performance. This paper presents the results of an analytical study conducted using finite element model (FEM) to simulate the behavior of three-points load beam reinforced with GFRP and/or steel bars. To calibrate the FEM, a small-scale experimental program was carried out using six reinforced concrete beams with $200{\times}200mm$ cross section and 1000 mm length cast and tested under three point bending load. The six beams were divided into three groups, each group contained two beams. The first group was a reference beams which was cast without any reinforcement, the second group concrete beams was reinforced using GFRP, and the third group concrete beams was reinforced with steel bars. Nonlinear finite element simulations were executed using ANSYS software package. The difference between the theoretical and experimental results of beams vertical deflection and beams crack shapes were within acceptable degree of accuracy. Parametric study using the calibrated model was carried out to evaluate two parameters (1) effect of number and position of longitudinal main bars on beam behavior; (2) performance of concrete beam with composite longitudinal reinforcement steel and GFRP bars.

Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves (화재곡선과 PET섬유 혼입량에 따른 고강도 세그먼트 콘크리트의 화재저항성 평가에 대한 연구)

  • Choi, Soon-Wook;Lee, Gyu-Phil;Chang, Soo-Ho;Park, Young-Taek;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.311-320
    • /
    • 2014
  • High strength concrete is not only vulnerable to the occurrence of spalling which generates the loss of cross-section in concrete structures but produces faster degradation in its mechanical properties than normal strength concrete in the event of fire. This study aims to evaluate fire resistance of high strength segment concrete with PET fibers mixed to prevent spalling under ISO834 (2hr) and RABT fire curve. As results, the samples without PET fibers show the concrete loss up to the depth of about 8 cm and 9.5 cm from the surface exposed to fire under ISO834 and RABT fire curve respectively. The samples mixed with PET fiber of 0.1% show no spalling under ISO834 fire curve and the spalled thickness of 6.5 cm under RABT fire curve after the fire tests. Finally, the sample mixed with PET fiber of 0.2% shows no spalling under RABT fire curve. The results indicate that the suitable amounts of PET fiber for securing fire resistance performance of this high strength segment concrete are 0.1% under ISO834 fire curve and 0.2% under RABT fire curve. However, even though spalling does not occur, it is necessary to repair the deterioration of concrete up to 4 cm from the surface exposed to fire after fire.

Alkali swelling characteristics of wood elements (목재 구성세포의 알칼리 팽윤 특성)

  • 황원중;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • To elucidate the behaviors of alkali swelllng of woods. the dimensional change in cross section of cell elements of four major Korean woods during alkali swelling were examined by an optical microscory, an imaging analysis method and an X-ray diffrartion During alkali swelling, tracheid diameter of Larix kaempferi wood showed greater swelling property than that of Pinus koraiensis wood, and the cell wall swelled highly over 10% sodium hydroxide solution treatment. The radial diameter of vessel elements in earlywood shrunk, but it swelled slightly in tangential direction. When treated with 5% NaOH, the wall thickness of wood fiber increased about three times over the original one. The thickness of cell wall in all elements and the diameter of wood fiber and tracheid showed almost isotropic shrinkage. The diameter of cell elements during the mercerization process decreased, but cell wall thickness Increased. Crystal transformation of cellulose in wood was not occurred by alkali treatments. but relative crystallinity and crystallite width of the woods increased slightly. Consequently, it was demonstrated that the swelling properties of woods were dependant on wood species, cell elements and alkali concentration.

  • PDF