• Title/Summary/Keyword: Fiber composite

검색결과 3,671건 처리시간 0.03초

Enhanced Interfacial Adhesion of Carbon Fibers by Poly (arylene ether phosphine oxide) Coatings (Poly(arylene ether phosphine oxide) 코팅에 의한 탄소섬유의 계면 접착성 향상 연구)

  • 김익천;강현민;육종일;윤태호
    • Composites Research
    • /
    • 제12권4호
    • /
    • pp.55-61
    • /
    • 1999
  • Interfacial shear strength (IFSS) of poly(arylene ether phosphine oxide) (PEPO) coated carbon fibers was evaluated via microdroplet test and compared with results obtained from carbon fibers coated with poly(arylene ether sulfone) (PES), Udel$^{\circledR}$ P-1700 and Ultem$^{\circledR}$ 1000. Interfacial adhesion between thermoplastics and uncoated carbon fibers was also measured in order to understand the adheion mechanism. PEPO coated carbon fibers showed the highest IFSS, followed by PES, Udel and Ultem coated fibers. A similar trend was observed for thermoplastic/uncoated fibers. SEM analysis indicated that only PEPO coated fiber exhibited cohesie failure in the vinylester resin, while others showed failure at or near the interface of polymer coating and vinylester resin. The enhanced interfacial adhesion by PEPO coating could be attributed to the strong interaction of P = 0 moiety to the fiber as well as to the vinylester resin.

  • PDF

Cyclic behavior of steel I-beams modified by a welded haunch and reinforced with GFRP

  • Egilmez, O. Ozgur;Alkan, Deniz;Ozdemir, Timur
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.419-444
    • /
    • 2009
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. Reducing the flange-web slenderness ratios (FSR/WSR) of beams is the most effective way in mitigating local member buckling as stipulated in the latest seismic design specifications. However, existing steel moment frame buildings with beams that lack the adequate slenderness ratios set forth for new buildings are vulnerable to local member buckling and thereby system-wise instability prior to reaching the required plastic rotation capacities specified for new buildings. This paper presents results from a research study investigating the cyclic behavior of steel I-beams modified by a welded haunch at the bottom flange and reinforced with glass fiber reinforced polymers at the plastic hinge region. Cantilever I-sections with a triangular haunch at the bottom flange and flange slenderness ratios higher then those stipulated in current design specifications were analyzed under reversed cyclic loading. Beam sections with different depth/width and flange/web slenderness ratios (FSR/WSR) were considered. The effect of GFRP thickness, width, and length on stabilizing plastic local buckling was investigated. The FEA results revealed that the contribution of GFRP strips to mitigation of local buckling increases with increasing depth/width ratio and decreasing FSR and WSR. Provided that the interfacial shear strength of the steel/GFRP bond surface is at least 15 MPa, GFRP reinforcement can enable deep beams with FSR of 8-9 and WSR below 55 to maintain plastic rotations in the order of 0.02 radians without experiencing any local buckling.

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Fabricaton of PEMFC separators with conducting polymer composites by injection molding process and evaluation of moldability and electrical conductivity of the separators (전도성 복합재료를 이용한 PEMFC용 separator 사출성형 제조 및 전기전도성 평가)

  • Yoon, Yong-Hun;Lim, Seung-Hyun;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권4호
    • /
    • pp.1361-1366
    • /
    • 2010
  • This research aims to develop polymer composites which can be used for PEMFC separators by injection molding process. Considering the moldability and stiffness, we used PPS(Poly(phenylene sulfide)) and PP(Polypropylene) as base resin. In order to improve electrical conductivity and physical properties, we chose glass fiber, carbon fiber, carbon black, and both expanded graphite and synthetic graphite. The 3 type composites are prepared for injection molding of PEMFC separators. and CAE(Computer Aided Engineering) analysis was conducted to optimize injection processing parameters(injection pressure, heat time, mold temperature etc.). We did successfully fabricate the separators by injection molding, and measure the electrical conductivity of the samples by using four point probe device. Conclusively, PP/SG/CB composite showed better both electrical conductivity and moldability than the others.

Adhesion Properties of Rubber Composite with Direct Blending Technique and Adhesive Composition (직접블렌딩 기술과 접착제 조성이 고무복합체 물성에 미치는 영향)

  • Lee, Seong-Jae;Chang, Young-Wook;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • 제34권3호
    • /
    • pp.253-261
    • /
    • 1999
  • The cure properties of rubber compounds containing different adhesive compositions were examined. As the amounts of tannin were increased in the adhesive composition, the scorch time was increased and cure rate was decreased due to the size and shape of tannin molecules. Also, the effect of adhesive composition on the adhesion between rubber and fiber was examined by TCAT(Tire Cord Adhesion Test), The reinforcing cords used in this study were mon ofilaments of nylon 610 and nylon 66. According to the results, the optimum adhesion strength between rubber and fiber could be obtained with adhesives whose molar ratios of formaldehyde/resorcinol were above 5/1 in the recipes. Although the level of dip pick-up(DPU) on the reinforcing cord affects the adhesion strength, the DPU of nylon 610 monofilament did not affect the adhesion strength because the level of DPU was constant regardless of the adhesive compositions. In this case, the adhesion strength with the adhesive composition could be explained with the behavior of tannin in the adhesive.

  • PDF

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

Hinge rotation of a morphing rib using FBG strain sensors

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Flauto, Domenico;Mennella, Fabio
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1393-1410
    • /
    • 2015
  • An original sensor system based on Fiber Bragg Gratings (FBG) for the strain monitoring of an adaptive wing element is presented in this paper. One of the main aims of the SARISTU project is in fact to measure the shape of a deformable wing for performance optimization. In detail, an Adaptive Trailing Edge (ATE) is monitored chord- and span-wise in order to estimate the deviation between the actual and the desired shape and, then, to allow attaining a prediction of the real aerodynamic behavior with respect to the expected one. The integration of a sensor system is not trivial: it has to fit inside the available room and to comply with the primary issue of the FBG protection. Moreover, dealing with morphing structures, large deformations are expected and a certain modulation is necessary to keep the measured strain inside the permissible measure range. In what follows, the mathematical model of an original FBG-based structural sensor system is presented, designed to evaluate the chord-wise strain of an Adaptive Trailing Edge device. Numerical and experimental results are compared, using a proof-of-concept setup. Further investigations aimed at improving the sensor capabilities, were finally addressed. The elasticity of the sensor structure was exploited to enlarge both the measurement and the linearity range. An optimisation process was then implemented to find out an optimal thickness distribution of the sensor system in order to alleviate the strain level within the referred component.

Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method (다구찌 기법을 이용한 이종재료 경사 홀 클린칭 접합부 수평 방향 접합강도 예측 및 검증)

  • Kang, D.S.;Park, E.T.;Tullu, A.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2016
  • Fiber metal laminates (FMLs) are well known for improved fatigue strength, better impact resistance, superior damage tolerance and slow crack growth rate compared to traditional metallic materials. However, defects and loss of strength of a composite material can occur due to the vertical load from the punch during the joining with a dissimilar material using a conventional clinching method. In the current study, tapered-hole clinching was an alternative process used to join Al 5052 and FMLs. The tapered hole was formed in the FML before the joining. For the better understanding of static and dynamic characteristics, a clinched joining followed by a tensile-shear test was numerically simulated using the finite element analysis. The design parameters were also evaluated for the geometry of the tapered hole by the Taguchi method in order to improve and compare the lateral joining strength of the clinched joint. The influence of the neck thickness and the undercut were evaluated and the contribution of each design parameter was determined. Then, actual experiments for the joining and tensile-shear test were conducted to verify the results of the numerical simulations. In conclusion, the appropriate combination of the design parameters can improve the joining strength and the cross-sections of the tapered-hole clinched joint formed in the actual experiments were in good agreement with the results of the numerical simulations.

The effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement

  • Tuncdemir, Ali Riza;Yildirim, Cihan;Ozcan, Erhan;Polat, Serdar
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.457-463
    • /
    • 2013
  • PURPOSE. The purpose of this study was to compare the effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement. MATERIALS AND METHODS. Fifty-five incisors extracted due to periodontal problems were used. All teeth were instrumented using a set of rotary root canal instruments. The post spaces were enlarged for a No.14 (diameter, 1.4 mm) Snowlight (Abrasive technology, OH, USA) glass fiber reinforced composite post with matching drill. The teeth were randomly divided into 5 experimental groups of 11 teeth each. The post spaces were treated with the followings: Group 1: 5 mL 0.9% physiological saline; Group 2: 5 mL 5.25% sodium hypochlorite; Group 3: 5 mL 17% ethylene diamine tetra acetic acid (EDTA), Group 4: 37% orthophosphoric acid and Group 5: Photodynamic diode laser irradiation for 1 minute after application of light-active dye solution. Snowlight posts were luted with self-adhesive resin cement. Each root was sectioned perpendicular to its long axis to create 1 mm thick specimens. The push-out bond strength test method was used to measure bond strength. One tooth from each group was processed for scanning electron microscopic analysis. RESULTS. Bond strength values were as follow: Group 1 = 4.15 MPa; Group 2 = 3.00 MPa; Group 3 = 4.45 MPa; Group 4 = 6.96 MPa; and Group 5 = 8.93 MPa. These values were analysed using one-way ANOVA and Tukey honestly significant difference test (P<.05). Significantly higher bond strength values were obtained with the diode laser and orthophosphoric acid (P<.05). There were no differences found between the other groups (P> .05). CONCLUSION. Orthophosphoric acid and EDTA were more effective methods for removing the smear layer than the diode laser. However, the diode laser and orthophosphoric acid were more effective at the cement dentin interface than the EDTA, Therefore, modifying the smear layer may be more effective when a self-adhesive system is used.

Strength and Crack-Damage Control Characteristics of Concrete Beams Layered with Strain-Hardening Cement Composites (SHCCs) (변형 경화형 시멘트 복합체로 단면 대체된 콘크리트 보의 강도 및 균열손상 제어 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Soo;Jang, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.269-272
    • /
    • 2008
  • This paper reports on the cracking mitigation and flexural behavior experimentally observed in concrete prisms layered with strain-hardening cement composites (SHCCs) which is micro-mechanically designed cement composite and exhibits pseudo tensile strain-hardening behavior accompanied by multiple cracking while using a moderate amount of fiber, typically less than 2 percent in term of fiber volume fraction. In this study, SHCC is reinforced with 1.3 percent polyvinyl alcohol (PVA) and 0.20 percent polyethylene (PE) in volume fraction. Tests were conducted using $100{\times}100{\times}400mm$ long prisms supported over a simply supported span of 350mm. The four point load was applied using MTS servo control machine. The thickness patched with SHCC is the main variable for this study. Experimental study shows that when subject to monotonic flexural loading, the SHCC layered repair system showed 2.7 - 4.2 times increased load carrying capacity, and mitigated cracking damage of concrete beams layered with SHCC compared with plain concrete beams.

  • PDF