• Title/Summary/Keyword: Fiber composite

Search Result 3,671, Processing Time 0.028 seconds

Fracture resistance of endodontically treated maxillary premolars restored by silorane-based composite with or without fiber or nano-ionomer

  • Shafiei, Fereshteh;Tavangar, Maryam Sadat;Ghahramani, Yasamin;Fattah, Zahra
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 2014
  • PURPOSE. This in vitro study investigated the fracture resistance of endodontically treated premolars restored using silorane-or methacrylate-based composite along with or without fiber or nano-ionomer base. MATERIALS AND METHODS. Ninety-six intact maxillary premolars were randomly divided into eight groups (n = 12). G1 (negative control) was the intact teeth. In Groups 2-8, root canal treatment with mesio-occlusodistal preparation was performed. G2 (positive control) was kept unrestored. The other groups were restored using composite resin as follows: G3, methacrylate-based composite (Z250); G4, methacrylate composite (Z250) with polyethylene fiber; G5 and G6, silorane-based composite (Filtek P90) without and with the fiber, respectively; G7 and G8, methacrylate-and silorane-based composite with nano-ionomer base, respectively. After aging period and thermocycling for 1000 cycles, fracture strength was tested and fracture patterns were inspected. The results were analyzed using ANOVA and Tukey HSD tests (${\alpha}$=0.05). RESULTS. Mean fracture resistance for the eight groups (in Newton) were G1: $1200{\pm}169^a$, G2: $360{\pm}93^b$, G3: $632{\pm}196^c$, G4: $692{\pm}195^c$, G5: $917{\pm}159^d$, G6: $1013{\pm}125^{ad}$, G7: $959{\pm}148^d$, G8: $947{\pm}105^d$ (different superscript letters revealed significant difference among groups). Most of the fractures in all the groups were restorable, except Group 3. CONCLUSION. Silorane-based composite revealed significantly higher strength of the restored premolars compared to that of methacrylate one. Fiber insertion demonstrated no additional effect on the strength of both composite restorations; however, it increased the prevalence of restorable fracture of methacrylate-based composite restored teeth. Using nano-ionomer base under methacrylate-based composite had a positive effect on fracture resistance and pattern. Only fiber-reinforced silorane composite restoration resulted in a strength similar to that of the intact teeth.

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

A Study on Mechanical Strength in AI7075/CFRP Hybrid Composite (AI7075/CFRP 하이브리드 복합재료의 기계적강도 평가에 관한 연구)

  • 유재환
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.57-62
    • /
    • 1997
  • The combined structure of hybrid composite made through the bonding process of materials of different properties greatly defines its mechanical characteristics, as the results of the experiments on materials of different properties show much dissimilarity. When carbon/epoxy materials are applied to hybrid composite, the carbon materials helps to improve the mechanical properties of the hybrid composite, and the epoxy reduces its fracture strain and impact resistance. Carbon fiber which is now in general commercialization is classified as high modulus or high strength system, and its manufacturing methods are various. The study of the materials having combined structure is focused on the numerical analysis of the layers of bonding surface in materials with difference modulus. The hybrid composite made through the multilayered bonding of reinforced aluminium sheets with aramid fiber now faces the marketing phase, and especially its excellent fatigue resistance and mechanical properties promote active researches on the similar products of hybrid composite. This study aims to investigate the effects of CFRP volume ratio and fiber's orientation over the properties of mechanical strength and fatigue life of the hybrid composite, AI7075/CFRP. To carry out this study, static tensile and fatigue tests were given to some of the panels which, made through the co-cure processing in an autoclave, have different CFRP volume ratio and carbon fiber orientations.

  • PDF

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Preparation of PVDF/PEI double-layer composite hollow fiber membranes for enhancing tensile strength of PVDF membranes

  • Yuan, Jun-Gui;Shi, Bao-Li;Ji, Ling-Yun
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • Polyvinylidene fluoride (PVDF) hollow fiber membrane is widely used for water treatment. However, the weak mechanical strength of PVDF limits its application. To enhance its tensile strength, a double-layer composite hollow fiber membrane, with PVDF and polyetherimide as the external and inner layers, respectively, was successfully prepared through phase inversion technique. The effects of additive content, air gap distance, N,N-dimethyl-acetamide content in the inner core liquid, and the temperature of external coagulation bath on the membrane structure, permeation flux, rejection, tensile strength, and porosity were determined. Experimental results showed that the optimum preparation conditions for the double-layer composite hollow fiber membrane were as follows: PEG-400 and PEG-600, 5 wt%; air gap distance, 10 cm; inner core liquid and the external coagulation bath should be water; and temperature of the external coagulation bath, 40 C. A single layer PVDF hollow fiber membrane (without PEI layer) was also prepared under optimum conditions. The double-layer composite membrane remarkably improved the tensile strength compared with the single-layer PVDF hollow fiber membrane. The permeation flux, rejection, and porosity were also slightly enhanced. High-tensile strength hollow fiber PVDF ultrafiltration membrane can be fabricated using the proposed technique.

Fabrication of Carbon/Basalt Hybrid Composites and Evaluation of Mechanical Properties (탄소/현무암 섬유강화 하이브리드 복합재료의 성형과 기계적 특성 평가)

  • Lee, Jin-Woo;Kim, Yun-Hae;Jung, Min-Kyo;Yoon, Sung-Won;Park, Jun-Mu
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • Carbon Fiber Reinforced Plastic (CFRP) has strong and superb material properties, especially in mechanical and heat-resisting aspects, but the drawback is its high price. In this study, we made a hybrid composite using carbon fiber and basalt fiber, which is expected to attribute to its strong material properties and its financial benefits. We found out that the higher the content of basalt fiber included, the lower the intensity, and carbon's intensity contents of 80% showed the similar intensity level as that of CFRP. Besides it was possible to get a better mechanical properties using the composite that included the mixed fiber, instead of using a composition of separate fibers filed.

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids

  • Prabhu, T. Niranjana;Demappa, T.;Harish, V.;Prashantha, K.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.97-111
    • /
    • 2015
  • Polypropylene short fiber (PP)-clay particulate-epoxy ternary composites were prepared by reinforcing PP short fiber and clay particles in the range of 0.1 phr to 0.7 phr into epoxy resin. Prepared hybrid composites were characterized for their mechanical, thermal and flame retardant properties. The obtained results indicated an increase in impact resistance, tensile strength, flexural strength and Young's modulus to an extent (up to 0.5 phr clay and 0.5 phr PP short fiber) and then decreases as the reinforcing phases are further increased. The thermal stability of these materials are found to increase up to 0.2 phr clay and 0.2 phr PP addition, beyond which it is decreased. Addition of clay is found to have the negative effect on epoxy-PP short fiber composites, which is evident from the comparison of mechanical and thermal properties of epoxy-0.5 phr PP short fiber composite and epoxy-0.5 phr PP short fiber-0.5 phr clay composite hybrid. UL-94 tests conducted on the composite hybrids have showed a reduction in the burning rate. Morphological observations indicated a greater fiber pull with the addition of clay. The performed tests in the present study indicated that materials under investigation have promising applications in construction, agriculture and decorative purposes.

Effect of agglomerated zirconia-toughened mullite on the mechanical properties of giant cane fiber mat epoxy laminated composites

  • Sahu, Pruthwiraj;Parida, Sambit Kumar;Mantry, Sisir
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.233-243
    • /
    • 2019
  • This paper depicts the development and characterizations of laminated composites made with cellulosic giant cane (Arundinaria gigantea) fiber mats and epoxy resin. Zirconia-toughened mullite (ZTM) is used as a filler material in the laminated composite which was prepared from sillimanite through plasma processing technique. The mechanical characterizations of this composite have been carried out as per ASTM standards to evaluate its usability as a structural material. The effects of varying weight percentages of the filler and two different fiber orientations namely, angle-ply [$+45^{\circ}/-45^{\circ}/+45^{\circ}$] and balanced cross-ply [$0^{\circ}/90^{\circ}/0^{\circ}$] on the physical and mechanical properties such as density, microhardness, impact strength, tensile strength and interlaminar shear strength of the layered composite specimens have been investigated. The study indicates that the inclusion of zirconia-toughened mullite in the composite laminate as filler improves its mechanical properties. Moreover, the use of giant cane fiber mat in the laminate is more eco-friendly than the synthetic fibers. This research also helps in generating additional data to enrich the repository of natural fiber reinforced laminated composites.

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.