• Title/Summary/Keyword: Fiber architecture

Search Result 458, Processing Time 0.026 seconds

Evaluation on Rear Fracture Reduction and Crack Properties of Cement Composites with High-Velocity Projectile Impact by Fiber Types (섬유 종류에 따른 시멘트복합체의 고속 비상체 충격에 대한 배면파괴저감 및 균열특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • Cement composites subjected to high-velocity projectile shows local failure and it can be suppressed by improvement of flexural toughness with reinforcement of fiber. Therefore, researches on impact resistance performance of cement composites are in progress and a number of types of fiber reinforcement are being developed. Since bonding properties of fiber with matrix, specific surface area and numbers of fiber are different by fiber reinforcement type, mechanical properties of fiber reinforced cement composites and improvement of impact resistance performance need to be considered. In this study, improvement of flexural toughness and failure reduction effect by impact of high-velocity projectile have been evaluated according to fiber type by mixing steel fiber, polyamide, nylon and polyethylene which are have different shape and mechanical properties. As results, flexural toughness was improved by redistribution of stress and crack prevention with bridge effect of reinforced fibers, and scabbing by high-velocity impact was suppressed. Since it is possible to decrease scabbing limit thickness from impact energy, thickness can be thinner when it is applied to protection. Scabbing of steel fiber reinforced cement composites was occurred and it was observed that desquamation of partial fragment was suppressed by adhesion between fiber and matrix. Scabbing by high-velocity impact of synthetic fiber reinforced cement composites was decreased by microcrack, impact wave neutralization and energy dispersion with a large number of fibers.

Evaluation of Thermal Performance and Mechanical Properties in the Cryogenic Environment of Basalt Fiber Reinforced Polyurethane Foam (현무암 섬유 보강 폴리우레탄폼의 열적 성능 및 극저온 환경에서의 기계적 특성 평가)

  • Jeon, Sung-Gyu;Kim, Jeong-Dae;Kim, Hee-Tae;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • LNG CCS which is a special type of cargo hold operated at -163℃ for transporting liquefied LNG is composed of a primary barrier, plywood, insulation panel, secondary barrier, and mastic. Currently, glass fiber is used to reinforce polyurethane foam. In this paper, we evaluated the possibility of replacing glass fiber-reinforced polyurethane foam with basalt fiber-reinforced polyurethane foam. We conducted a thermal conductivity test to confirm thermal performance at room temperature. To evaluate the mechanical properties between basalt and glass-fiber-reinforced polyurethane foam which is fiber content of 5 wt% and 10 wt%, tensile and an impact test was performed repeatedly. All of the tests were performed at room temperature and cryogenic temperature(-163℃) in consideration of the temperature gradient in the LNG CCS. As a result of the thermal conductivity test, the insulating performance of glass fiber reinforced polyurethane foam and basalt fiber reinforced polyurethane foam presented similar results. The tensile test results represent that the strength of basalt fiber-reinforced polyurethane foam is superior to glass fiber at room temperature, and there is a clear difference. However, the strength is similar to each other at cryogenic temperatures. In the impact test, the strength of PUR-B5 is the highest, but in common, the strength decreases as the weight ratio of the two fibers increases. In conclusion, basalt fiber-reinforced polyurethane foam has sufficient potential to replace glass fiber-reinforced polyurethane foam.

Effect of Repetitive Impacts on the Mechanical Behavior of Glass Fiber-reinforced Polyurethane Foam (반복 충격이 유리섬유 강화 폴리우레탄 폼의 기계적 성능에 미치는 영향)

  • Kim, Myung-Sung;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • In a cryogenic storage structure, the insulation system is in an environment in which fluid impact loads occur throughout the lifetime of the structure. In this study, we investigated the effect of repetitive impact loading on the mechanical performance of glass fiber-reinforced polyurethane foam. The repeated impact loading test was conducted in accordance with the required impact energy and the required number of repetitive impacts. The impact behavior of glass fiber-reinforced polyurethane foam was analyzed in terms of stress and displacement. After the impact test, the specimen was subjected to a compression test to evaluate its mechanical performance. We analyzed the critical impact energy that affected mechanical performance. For the impact conditions that were tested, the compressive strength and elastic modulus of the polyurethane foam can be degraded significantly.

Tensile Behavior of Polyetylene Fiber-Reinforced Cementless Composite (폴리에틸렌섬유 보강 무시멘트 복합재료의 인장 거동)

  • Lee, Bang Yeon;Choi, Jeong-Il;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5600-5607
    • /
    • 2015
  • This study investigated experimentally the tensile behavior of polyetylene fiber-reinforced cementless composite. Four types of polyetylene fiber-reinforced cementless composite were designed. The water to binder ratio was 0.30-0.38, and the amount of polyetylene fiber was 1.75 vol%. A series of experiments including uniaxial tension, density, and compression tests were performed to evaluate the performance of the composites. From the test results, it was exhibited that the composite has superior tensile performance such as high tensile strength and tensile strain capacity compared with other types of composites.

Modeling Green-light Fiber Amplifiers for Visible-light Communication Systems

  • Khushik, Muhammad Hanif Ahmed Khan;Jiang, Chun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • The visible-light communication (VLC) system is a promising candidate to fulfill the present and future demands for a high-speed, cost-effective, and larger-bandwidth communication system. VLC modulates the visible-light signals from solid-state LEDs to transmit data between transmitter and receiver, but the broadcasting and the line-of-sight propagation nature of visible-light signals make VLC a communication system with a limited operating range. We present a novel architecture to increase the operating range of VLC. In our proposed architecture, we guide the visible-light signals through the fiber and amplify the dissipated signals using visible-light fiber amplifiers (VLFAs), which are the most important and the novel devices needed for the proposed architecture of the VLC. Therefore, we design, analyze, and apply a VLFA to VLC, to overcome the inherent drawbacks of VLC. Numerical results show that under given constant conditions, the VLFA can amplify the signal up to 35.0 dB. We have analyzed the effects of fiber length, active ion concentration, pump power, and input signal power on the gain and the noise figure (NF).

Enhancement of Compressive and Shear Strength for Concrete Masonry Prisms with Steel Fiber-Reinforced Mortar Overlay (강섬유보강 모르타르 바름에 의한 콘크리트 조적 프리즘의 압축 및 사인장 강도 증진 효과)

  • Yu, Ji-Hoon;Myeong, Seong-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • Concrete masonry prisms are strengthened with steel fiber-reinforced mortar (SFRM) overlay and tested for compressive and diagonal tension strength. Masonry prisms are produced in poor condition considering standard workmanship for masonry buildings in Korea. Amorphous steel fibers are adopted for SFRM, and appropriate mixing ratios of SFRM are derived considering constructability and strength. Masonry prisms are strengthened with different fiber volume ratios, while numerous strengthened faces and additional reinforcing meshes are produced for compression and diagonal tension tests. Compression and diagonal tension strength are increased by up to 122% and 856%, respectively, and the enhancement effect for diagonal tension strength was superior compared to compression strength. Finally, the test results and strength prediction equations based on existing literature and regression analysis are compared.

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi;Han, Xiaoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.273-279
    • /
    • 2017
  • A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete (비정질 강섬유보강콘크리트의 휨성능 특성)

  • Ku, Dong-Oh;Kim, Seon-Du;Kim, Hee-Seung;Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.483-489
    • /
    • 2014
  • In this study, the flexural test of amorphous steel fiber-reinforced concrete was performed according to ASTM C 1609 to investigate its flexural performances. The amorphous steel fibers have different configurations from conventional steel fibers : thinner sections and coarser surfaces. Primary test parameters are fiber type (amorphous and conventional steel fibers), concrete compressive strength (27 and 50 MPa), and fiber volume fraction (0.25, 0.50, and 0.75%). Based on the test results, flexural strength and flexural toughness of the amorphous and conventional steel fiber-reinforced concrete were investigated. The results showed that the addition of the amorphous steel fibers into concrete could enhance both flexural strength and toughness while the addition of the conventional steel fibers into concrete was mainly effective to increase the flexural toughness.

Effects of Fiber Volume Fraction and Water/Cement Ratio on Toughness Development of Steel Fiber Reinforced Concrete

  • Lee, Chang Joon;Lange, David A.;Lee, Jae Yong;Shin, Sung Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Flexure toughness of Steel Fiber Reinforced Concrete (SFRC) shows a time-dependent characteristic due to the hydration process of the cement matrix in the SFRC system. The effect of two important factors, water/cement (w/c) ratio and fiber volume fraction, on the flexure toughness development of SFRC were investigated. Three different SFRC mixtures with hooked-end steel fibers were tested using a four-point bending testing configuration. Each mixture was tested at five different ages. The results showed that the post-peak toughness of SFRC developed at an earlier age than the first-crack toughness.

Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

  • Smarzewski, Piotr;Barnat-Hunek, Danuta
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze-thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze-thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.