• 제목/요약/키워드: Fiber angle

검색결과 678건 처리시간 0.032초

복합재료의 압축성형에 따른 기계적 특성변화 (The Behavior of Mechanical property of Thermoplastic Composite in Compression Molding)

  • 이중희;이호언
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.261-264
    • /
    • 2000
  • The objective of this work was to characterize mechanical properties of thermoplastic composites for various forming condition in compression molding. Randomly oriented long glass fiber reinforced polypropylene(PP) was used in the work. The composite materials contained 20%, 30%, and 40% glass fiber by weight. Compression molding was conducted to make the test specimen. Dimensional stability was measured on each forming condition with the spring-forward angle. Tensile test was conducted to characterize mechanical properties of formed parts in various forming conditions.

  • PDF

탄소섬유 에폭시 복합재료 중공축의 연삭 특성에 관한 연구 (A Study on the Grinding Characteristics of Carbon Fiber Epoxy Composite Hollow Shafts)

  • 김포진;이대길;한흥삼;이동주
    • Composites Research
    • /
    • 제12권2호
    • /
    • pp.36-45
    • /
    • 1999
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles, spindles of machine tools and rollers for film manufacturing. However, the molded composite shafts are not usually accurate enough for mechanical machine elements, which require turning or grinding of composite hollow shafts. In this paper, the grinding characteristics of composite hollow shafts, which are flexible in the radial and circumferential directions, were investiaged experimentally and analytically with respect to the stacking angle, thickness and outer diameter.

  • PDF

Mechanical Properties Prediction by Manufacturing Parameters for Braided Composites

  • Kim, Myungjun
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.25-31
    • /
    • 2020
  • The development of manufacturing technology for braided composites has led to farther extension of the applications in aerospace structures. Since the mechanical characteristics of braided composites are affected by various materials and manufacturing parameters, it is important to determine the parameters required to appropriately design the braided composite structures. In this study, we proposed a geometric model of RUC (repeating unit cell) for 2D braided composites, and predicted the mechanical properties according to the change of fiber volume fraction, fiber filament size, braiding angle, and gap between adjacent yarns by the yarn slicing technique and stress averaging method. Finally, we analyze the characteristics of mechanical properties according to each manufacturing parameter of the braided composite material.

Measurement of Spatial Coherence Function of multy-mode beam by using a Sagnac Interferometer

  • 이창혁;강윤식;노재우
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 하계학술발표회 논문집
    • /
    • pp.187-189
    • /
    • 2008
  • The spatial coherence function of multy-mode beam was measured by using a Sagnac interferometer and self referencing technique. For leaner polarization laser beam passing through a multy-mode fiber, its change value of spatial mode and polarization from stress of faber and input coupling angle. And each spatial mode have each polarizations, when we simulation Wigner distribution function and Spatial Correlation function of spatial multi-mode beam by using Hermit Gaussian modes leaner sum. We measured spatial coherence function of using by multy-mode fiber. One can use this measurement method to study and characterize the property of multy-mode light field coming out of GRIN multy-mode fiber.

  • PDF

광섬유 Fabry-Perot 간섭계를 이용한 위상 변화량의 정밀 측정 (Precise Measurement of the change n the optical length of a fiber Fabry-Perot interferometer.)

  • 김영준
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1989년도 제4회 파동 및 레이저 학술발표회 4th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.113-118
    • /
    • 1989
  • By using the single mode optical fiber, we fabricated Fiber-optic Fabry-Perot interferometer (FFPI). The change over a wide range in the optical path length of a FFPI is observed. The temporal movement of the interference fringes by external condition to P.Z. T) is converted to circular motion on an oscilloscope display and then recorded with a micro-computer. The two output voltages of the D/A converters are applied to X and Y terminals of oscilloscope to display circular motion on oscilloscope. Thus the direction of phase shift can be determined with observing the direction of circular motion. The variation of the optical length can be measured by calculating the angle of spot of circle with an accuracy of λ/90 wave length due to variation of temperature in this system 2.7x10-4$^{\circ}C$.

  • PDF

섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향 (Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites)

  • 김진우;이동기
    • Composites Research
    • /
    • 제20권5호
    • /
    • pp.13-19
    • /
    • 2007
  • 섬유강화 열가소성수지 복합재료는 열경화성수지 복합재료의 강도 수준에 근접할 뿐만 아니라 열경화성수지 복합재료의 취약점으로 지적되고 있는 생산성, 리사이클, 내충격성 등이 우수하다. 일방향 섬유강화 복합재료의 강도계산을 위한 연구와 섬유배향상태를 측정하여 정량적으로 나타낼 수 있도록 연구하여 발표하였으나, 섬유함유율에 따른 섬유배향상태와 복합재료의 기계적 성질을 예측을 할 수 있는 데이터베이스 구축은 되어있지 않으므로 이에 대한 체계적인 연구가 필요하다 본 연구에서는 섬유함유율에 따른 섬유배향상태를 변화시켜 섬유강화 열가소성수지 복합판재를 제작한 후, 섬유함유율 및 섬유배향상태가 복합판재의 인장강도에 어떠한 영향을 주는지에 대해서 고찰하였다. 섬유강화 열경화성수지 복합재료의 $0^{\circ}$ 방향에서 인장강도 비는 등방성에서 이방성으로 갈수록 섬유배향함수와 섬유함유율에 관계없이 일정하게 나타났으나, $90^{\circ}$ 방향에서 인장강도 비는 인장 하중이 강화섬유 길이방향의 수직방향으로 작용했을 때 섬유필라멘트 분리에 의해 감소하였다.

CFRP 복합재 튜브의 압괴메카니즘에 관한 실험적 연구 (The Experimental Study on the Collapse Mechanism of CFRP Composite Tubes)

  • 김영남;차천석;양인영
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.149-157
    • /
    • 2002
  • This paper is to investigate collapse mechanisms of CFRP(Carbon Fiber Reinforced Plastics)composite tubes and to evaluate collapse characteristics on the change of interlaiminar number and ply orientation angle of outer under static and impact axial compression loads. When a CFRP composite tube is crushed, static/impact energy is consumed by friction between the loading plate and the splayed fronds of the tube, by fracture of the fibers, matrix and their interface. These are associated with the energy absorption capability. In general, CFRP tube with 6 interlaminar number(C-type), absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CFRP tubes and loading status(static/impact). Typical collapse modes of CFRP tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shown in case of CFRP tubes with 0° orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CFRP tubes with 90°orientation angle of outer under static loadings, however in Impact tests those were collapsed in fragmentation mode .

산소 플라즈마로 표면처리된 탄소섬유/에폭시 적층복합재의 전단거동 (Shear Behavior of Plasma-treated Graphite/Epoxy Laminated Composites Using Oxygen Gas)

  • 김민호;이경엽;백영남;정동호;김현주
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.103-108
    • /
    • 2008
  • In-plane shear tests were performed to investigate the shear property change of FRP by plasma modification. Graphite/epoxy prepreg was used as a test material and plasma source was a microwave (2.4GHz) type. Plasma was induced by oxygen gas and its flow rate was kept $4{\sim}5$sccm with low vacuum state of $10^{-3}$ Torr. Prepreg was stacked unidirectionally ($[0^0]_8$) after plasma modification. Wettability was determined by measuring a contact angle. The results showed that the contact angle was decreased from $86^0$ to $45^0$ after plasma modification. Shear strength was also improved by ${\sim}10%$. SEM examination was made on the fracture surface and functional group produced by the plasma modification was investigated by XPS.

이중 후퇴각을 갖는 복합재 날개의 플러터 특성 (Flutter Characteristics of Double-Swept Composite Wings)

  • 구교남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1228-1233
    • /
    • 2000
  • A new planform of a wing having two sweep angles is proposed to enhance the aeroelastic stability of a swept-forward wing. The double-swept wing has two sweep angles with inboard wing swept-back and outboard wing swept-forward. Aeroelastic analysis is performed with the finite element method to model wing structure and the doublet point method to predict aerodynamic loads. The sweep angle of the inboard wing is varied in this analysis while the outboard wing is swept forward to a pre-selected amount. The results show that the aeroelastic stability can be drastically enhanced by adjusting the sweep angle of the inboard wing. The effect of the fiber orientation in the double-swept composite wing is studied and the proper ply angle is identified to maximize critical speed.

  • PDF