• Title/Summary/Keyword: Fiber Volume Fraction Gradient

Search Result 5, Processing Time 0.017 seconds

A Study on Reduction of Thermal Interlaminar Forces of Fiber-Reinforced Laminate Composites Using Volume Fraction Gradient (체적비구배를 이용한 섬유강화 적층 복합재의 열하중에 의한 층건력 감소에 대한 연구)

  • Choe, Deok-Gi;Sin, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1115-1122
    • /
    • 2000
  • This paper addresses an application of a fiber volume fraction gradients to reduce the interlaminar forces of fiber reinforced composites subjected to thermal loadings. The degree of the reduction in the interlaminar forces may be expressed by introducing a new parameter, so called, the interlaminar force parameter. Several cases of stacking sequences and models for fiber volume fraction gradients prove the availability of the new parameter which is defined in this study.

Optimal Design of Laminate Composites with Gradient Structure for Weight Reduction

  • Back, Sung-Ki;Kang, Tae-Jin;Lee, Kyung-Woo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.68-72
    • /
    • 1999
  • In an effort to construct a structure under the design principle of minimal use of materials for maximum performances, a discrete gradient structure has been introduced in laminate composite systems. Using a sequential linear programming method, the gradient structure of composites to maximize the buckling load was optimized in terms of fiber volume fraction and thickness of each layer. Theoretical optimization results were then verified with experimental ones. The buckling load of laminate composite showed maximum value with the outmost [$0^{\circ}$] layer concentrated by almost all the fibers when the ratio of length to width(aspect ratio) was less than 1.0. But when the aspect ratio was 2.0, the optimum was determined in a structure where the thickness and fiber volume fraction were well balanced in each layer. From the optimization of gradient structure, the optimal fiber volume fraction and thickness of each layer were proposed. Experimental results agreed well with the theoretical ones. Gradient structures have also shown an advantage in the weight reduction of composites compared with the conventional homogeneous structures.

  • PDF

Optimal Design of Laminate Composites with Gradient Structure (경사형 구조 적층복합재료의 최적설계에 관한 연구)

  • 백성기;강태진;이경우
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.40-50
    • /
    • 2000
  • In an effort to construct a structure under the design principle of minimal use of materials for maximum performances, a discrete gradient structure has been introduced in laminate composite systems. Using a sequential linear programming method, the gradient structure of composites to maximize the buckling load was optimized in terms of fiber volume fraction and thickness of each layer. The buckling load showed maximum value with the outmost [$0^{\circ}$] layer concentrated by almost all the fibers when the ratio of length to width(aspect ratio) was less than 1.0. But when the aspect ratio was 2.0, the optimum was determined in a structure where the thickness and fiber volume fraction were well-balanced in each layer. From the optimization of gradient structure, the optimal fiber volume fraction and thickness of each layer were proposed. Gradient structures have also shown an advantage in the weight reduction of composites compared with the conventional homogeneous structures.

  • PDF

A Study on Biomimetic Composite for Design of Artificial Hip Joint (인공 관절 설계를 위한 바이오미메틱 복합재료에 관한 연구)

  • 김명욱;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.234-238
    • /
    • 1999
  • This study suggests the design of the functionally gradient composite, [0/90/0/core]$_s$ cross-ply laminate, to prevent stress concentration induced from the difference of rigidity between the bone and the artificial hip joint and to reinforce the wear property of the surface and the expectation of their mechanical properties. First, the four-point bending test is done about wet bones and dry bones to know the mechanical properties of the cortical bones. In result, the wet bone shows the viscoelastic behavior and the dry bone shows the elastic behavior. Moreover, we expect the properties of the proposed gradient composites as a function of carbon fiber volume fraction in each layer to apply Halpin-Tsai equation, CLPT(classical laminate plate theory), and Bernoulli beam theory etc. and decide the thickness ratio of each lamina in order to match Young's modulus of the anisotropic cortical bone with the proposed gradient composites.

  • PDF

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.