• 제목/요약/키워드: Fiber Type

검색결과 2,102건 처리시간 0.026초

무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합재의 3차원 압축변형 해석 (3-Dimensional Deformation Analysis for Compression Molding of Polymeric Composites with Random/Unidirectional Fiber-Reinforced Laminates)

  • 채경철;조선형;김이곤
    • Composites Research
    • /
    • 제12권5호
    • /
    • pp.23-30
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin, lightweight, strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. The characteristics of flow fronts such as a bulging phenomenon for random mat and unidirectional fiber mat and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on mold filling parameters are also discussed.

  • PDF

편심축하중을 받는 강섬유보강 콘크리트 기둥의 실험적 연구 (An Experimental Study on Eccentrically Loaded Steel Fiber Reinforced Concrete Columns)

  • 박홍용;안영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.857-860
    • /
    • 2000
  • An experimental study on the behavior of Steel Fiber Reinforced Concrete Columns under eccentric compression are presented. Forth-one columns were tested; the variables were column type, eccentricity of load, fiber contents, and longitudinal reinforcement ratio. The column size was $250\times160$ mm in cross section with an effective length of 1150 mm. Eccentricity of load was varied in the range from 1/6 to 1/2 times the column depth. This paper is to provides a framework for basic understanding of the steel fiber concrete columns.

Cracking of Fiber-Reinforced Self-Compacting Concrete due to Restrained Shrinkage

  • Kwon, Seung-Hee;Ferron, Raissa P.;Akkaya, Yilmaz;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.3-9
    • /
    • 2007
  • Fiber-reinforced self-compacting concrete (FRSCC) is a new type of concrete mix that can mitigate two opposing weaknesses: poor workability in fiber-reinforced concrete and cracking resistance in plain SCC concrete. This study focused on early-age cracking of FRSCC due to restrained drying shrinkage, one of the most common causes of cracking. In order to investigate the effect of fiber on shrinkage cracking of FRSCC, ring shrinkage tests were performed for polypropylene and steel fiber-reinforced SCC. In addition, finite element analyses for those specimens were carried out considering drying shrinkage based on moisture diffusion, creep, cracking resistance of concrete, and the effect of fiber. The analysis results were verified via a comparison between the measured and calculated crack width. From the test and analysis results, the effectiveness of fiber with respect to reducing cracking was confirmed and some salient features on the shrinkage cracking of FRSCC were obtained.

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

Compressive Properties of Amorphous Metal Fiber Reinforced Concrete Exposed to high Temperature

  • Lee, Jun-Cheol;Kim, Wha-Jung;Lee, Chang-Joon
    • 한국건축시공학회지
    • /
    • 제12권2호
    • /
    • pp.183-193
    • /
    • 2012
  • Compressive property of high strength concrete with amorphous metal fibers subject to high temperature has been investigated. The measure of this investigation includes explosive spalling, weight loss, residual compressive strength, strain at peak stress, elastic modulus, and residual energy absorption capacity after exposure to $400^{\circ}C$, $600^{\circ}C$and $800^{\circ}C$. In addition to the amorphous metal fiber, two other types of fibers (polypropylene fiber and hooked-end steel fiber) were also included in this investigation for comparison. The experimental program was conducted with high strength concrete using several combinations of the fiber types. The testing result shows that the concrete with amorphous metal fibers plus polypropylene fibers shows a superior behavior than those using other combination or single fiber type ingredient.

섬유보강 실트질 모래의 동적 변형특성 (Dynamic Deformation Characteristics of Fiber Mixed Silty Sand)

  • 허준;장병욱
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.59-70
    • /
    • 2005
  • A series of resonant column test was performed to investigate the dynamic deformation characteristics of silty sand soils mixed with polypropylene fibrillated type fiber. Results show that optimum mixing ratios were $0.2\%$ for 19mm of cut fiber for shear modulus and $0.1\%$ for 60mm cut fiber fur damping ratio. As shear strain was increased, normalized values of shear modulus (G(Reinforced)/ G(Unreinforced)) of fiber reinforced soil were increased up to $10^{-3}\%\~10^{-1}\%$ ranges. However, normalized damping ratio (D(Reinforced/D(Unreinforced)) was diminished with an increase in strain beyond $10^{-3}\%\~10^{-1}\%$ for the damping capacity of soils mixed with fiber. Normalized shear modulus $(G/G_{max})$ obtained from the test was plotted in the chart suggested by Seed and Idriss. The shear modulus of silty sand was located between sand and gravel curves.

광전류/광전압 센서의 일체화 설계에 관한 연구 (A study on single body design of optical current sensor and optical voltage sensor)

  • 김영수;김요희
    • 한국통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1596-1603
    • /
    • 1996
  • A single body type of fiber-optic current and voltae sensor using a rare earth doped YIG and a bismuth silicon oxide single crystsl is proposed, which is used for simultaneous measurement of the AC electric current and AC electric voltage over the trasmission lines. Experimental results showed that the fiber-optic current sensor has the maximum 7.5% error within the current range of 0A to 400A, and the fiber-optic voltage sensor has the maximum 0.87% error within the current range of 0V to 400V. The output waveforms of proposed fiber-optic sensor system has a good agreement with output waveforms of conductor current and voltage. Experimental results proved that the output of fiber-optic current sensor is not affected by the electric voltage applied to the fiber-optic voltage sensor, and also, that the output of fiber-optic voltage sensor is not affected by the electric current applied to the fiber-optic current sensor.

  • PDF

The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure

  • Zheng, Zhi;Sun, Ye;Pan, Xiaolan;Su, Chunyang;Kong, Jingchang
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2156-2172
    • /
    • 2022
  • This paper investigates the optimum fiber reinforcement for prestressed concrete containment vessels (PCCVs) under internal pressure. To achieve this aim, steel fiber, which is the most widely used fiber type in current engineering applications, is adopted to constitute steel fiber-reinforced concrete (SFRC) to substitute the conventional concrete in the PCCV. The effects of characteristic parameters, 𝜆sf, of the steel fiber affecting significantly the mechanical behavior of the concrete are first taken into account. Partial or complete concrete regions of the PCCV are also considered to be replaced by SFRC to balance the economy and safety. By adopting the ABAQUS software, the ultimate bearing capacity and performance for the fiber-reinforced PCCV are scientifically studied and quantified, and the recommendations for the optimum way of fiber reinforcement are presented.

강섬유보강 패널구조의 보강효과 분석 및 인성평가 기법 (Steel Fiber Reinforcing Effect Analysis of Slab Panel Structure and Assessment Technics of Toughness)

  • 전찬기;박선규
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.209-220
    • /
    • 1999
  • 터널의 숏크리트 라이닝이나 포장 콘크리트 보강용으로 요접철망(wire mesh)을 대신해서 강섬유가 사용되고 있다. 본 연구에서는 강섬유 보강으로 인한 인성평가 대상 구조물을 slab panel 구조($60{\times}60{\times}10$cm)로 하고, 강섬유 혼입률은 콘크리트 용적의 0.5% ~ 2%로 다양화하였다. 이 때 사용한 강섬유는 Dramix ZC type으로 직경은 0.8mm, 길이는 60mm이다. 강섬유 효과의 상대평가를 위한 용접철망(wire mesh)보강은 상면, 하면, 상하면 보강으로 하였다. 이들 실험 결과를 각국의 인성 평가 방법으로 비교 검토한 결과 슬래브(slab) 시험체 적용을 위한 EFNARC의 방법은 25mm의 처짐까지 측정하는 것이 너무 큰 것으로 평가되었고, 보의 휨인성 평가법을 적용하여 검토한 결과에서는 Johnston(II)방법에 의한 $I_{5.5}$ 가장 적절하였으며, JCI-SF4방법에서 지간의 1/150까지 측정하는 것은 너무 작았다. 또한 강섬유로 용접철망(wire mesh)을 효과적으로 대치할 수 있음을 알 수 있었고, 인성효과에 유용한 강섬유 혼입량은 0.5% ~ 1%범위에 있는 것으로 나타났다.

유연 광섬유 기술을 적용한 의류 제품용 로고 디자인 방향의 제시 (A Suggestion of Guideline for designing of logo type for Apparel products based on the technology of flexible plastic optical fiber)

  • 김남희;양진희;홍순교;홍석일;이주현
    • 감성과학
    • /
    • 제15권4호
    • /
    • pp.469-476
    • /
    • 2012
  • 본 연구의 목적은 유연 광섬유의 스마트 의류용 로고 디자인을 개발하기 위한 디자인 지침을 도출하는 것이다. 로고 디자인을 위한 지침 도출의 기준은, 첫째 광섬유 전면에 걸쳐 적절한 밝기 정도를 나타내는지의 여부, 둘째 광섬유 전면에 걸쳐 비교적 균일한 밝기 특성을 나타내는가 등이었다. 이를 위하여, 실험 1에서는 광섬유사의 각도 변화와 길이에 따른 유연 광섬유의 밝기 특성을 분석하였으며, 실험 2에서는 실제 의류용 로고 디자인을 위한 지침을 도출하기 위해, 알파벳 대문자의 주요 형태소 등의 유연 광섬유 밝기 특성을 분석하였다. 두 개의 실험 결과를 토대로 하여, 유연 광섬유로 구성된 의류용 로고 디자인을 위한 지침과 제한점을 도출하였다.

  • PDF