• 제목/요약/키워드: Fiber Ratio

검색결과 2,432건 처리시간 0.035초

이종 섬유 혼입비에 따른 섬유보강 콘크리트의 휨 인성 및 휨 인장강도에 관한 연구 (Study on flexural toughness and flexural tensile strength of fiber reinforced concrete by mixture ratio of different fibers)

  • 박홍용;류종현;조용범
    • 한국터널지하공간학회 논문집
    • /
    • 제12권1호
    • /
    • pp.51-60
    • /
    • 2010
  • 최근 새로운 형태의 폴리올레핀 섬유에 대하여 성능향상 개발이 이루어지고 있으며, 기존 섬유와 혼입하여 사용하거나 폴리올레핀 섬유만을 사용한 콘크리트 특성에 대하여 연구와 검증이 필요하다. 본 연구의 목적은 강섬유와 폴리올레핀 섬유를 사용한 콘크리트의 휨 인성 및 휨 인장강도에 대한 성능을 확인하기 위하여 324개의 보 시편을 제작하고, KS F2566과 ASTM C 1399-02규격에서 제시한 4점 휨 실험을 수행하여 휨 인성지수, 등가 휨 인장강도, 평균잔류강도를 분석하였다. 실험결과, 섬유 혼입률, 섬유 형상비에 대한 휨 인성 및 인장강도에 대한 효과가 확인되었으며, 강섬유와 폴리올레핀의 최적의 혼입비율을 제시하였다.

화상 처리를 이용한 섬유 배향각 분포 측정에서 농도법과 카운트법의 정확도 비교 (Accuracy Comparison between Intensity Method and Count Method in Measurement of Planar Orientation of Fibers Using Image Processing)

  • 이상동;김혁;이동기;한길영;김이곤
    • 비파괴검사학회지
    • /
    • 제18권5호
    • /
    • pp.357-364
    • /
    • 1998
  • 농도법과 카운트법에 의한 섬유 배향각 분포 측정의 정확도에 대해서 비교 검토하기 위하여, 섬유 종횡비와 면적비 및 섬유 배향 상태를 변화시켜 플로터로 섬유 배향 시뮬레이션 그림을 작도하여 섬유 배향 함수값을 구하였다. 이 섬유 배향 함수값을 시뮬레이션 그림에 대해 농도법과 카운트법으로 측정한 섬유 배향 함수값과 비교 검토하였다. 결국, 섬유 배향각 분포 측정의 정확도는 카운트법이 농도법보다 약 4% 정도 높게 나타남을 알 수 있었다.

  • PDF

유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가 (Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates)

  • 우성충;최낙삼
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.

녹색자연환경 보존을 위한 지속가능한 자원순환시스템 콘크리트 (Using Recycled Aggregates in Sustainable Resource Circulation System Concrete for Environment Preservation)

  • 이영주;장정권;김윤일;임칠순
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.57-61
    • /
    • 2010
  • In this study, many concrete specimens were tested to investigate the variations of strength characteristics of high-strength concrete due to amount of recycled coarse aggregates, and to investigate the effect of steel-fiber reinforcement on concrete using recycled coarse aggregates. Test results showed that all of the variations of compressive, tensile and flexural strength appeared in linear reduction according to icrease the amount of recycled coarse aggregates, and steel-fiber reinforcement of 0.75% volumn of concrete recovered completely spliting tensile strength and flexual strength and recovered greatly compressive strength of concrete using recycled coarse aggregates of 100% displacement. And test results showed that the shear strength falled rapidly at 30% of replacement ratio so far as 34% of strength reduction ratio, but after that it falled a little within 3% up to the replacement ratio 100%, and steel-fiber reinforcement of 0.75% of concrete volumn recovered completely the deteriorated shear strength, moreover improved the shear strength above 50% rather than that of concrete using natural coarse aggregates.

  • PDF

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

Transmission Characteristics of Long-Period Fiber Gratings Using Periodically Corroded Single-Mode Fibers

  • Lee, Jonghwan;Bang, Ngac An;Han, Young-Geun
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.376-381
    • /
    • 2015
  • Transmission characteristics of long-period fiber gratings (LPFGs) fabricated by periodically etching a conventional single-mode fiber (SMF) are investigated. After coating the SMF with photoresist, the cladding of the SMF is symmetrically and periodically removed by using a wet etching technique resulting in the formation of the LPFG. Tensile strain reinforces the coupling strength between the core and the cladding mode based on the photoelastic effect. The extinction ratio of the SMF-based LPFG at a wavelength of 1550.8 nm is measured to be -15.1 dB when the applied strain is $600{\mu}{\varepsilon}$. The ascent of ambient index shifts the resonant wavelength to shorter wavelength because of the increase of the effective refractive index of the cladding mode. The extinction ratio is diminished by increase in the ambient index because of the induction of the optical attenuation of the cladding mode. The transmission characteristics of the proposed LPFG with variations in torsion are also measured. The photoelastic effect based on torsion changes the extinction ratio and the resonant wavelength of the proposed SMF-based LPFG. The polarization-dependent loss of the LPFG is also increased by torsion because of the torsion-induced birefringence. The polarization-dependent loss of the LPFG at torsion of 8.5 rad/m is measured to be 3.9 dB.

유리섬유 혼입 기포콘크리트의 배합변화에 따른 ,압축강도 특성에 관한 연구 (The Study on Compressive-Strength Property of the Aerated Concrete using Glass Fiber by Mixing Ratio)

  • 허재원;김효열;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study was to analyze the compression strength research by aerated concrete as mixing ratio This Study used foaming-agent and produced aerated concrete by pre-foam way that is used in construction site. An experiment changes unit cement amount, w/c and the glass fiber mixing rate and 'measured capacity change, unit capacity weight and compressive strength. The results obtained from experimental study are as following; Research to reduce unit capacity weight in condition more than unit cement amount 500kgf is considered should be gone side by side. The highest compressive strength result appeared in aerated concrete that cement amount 600kgf and w/c ratio $45\%$, $50\%$. compressive strength was increased maximum $34%$ when glass fiber $0.7\%$ addition cause by coherence enlargement to enlargement of cement paste and glass fiber addition per unit volume

  • PDF

Optimal Design of Laminate Composites with Gradient Structure for Weight Reduction

  • Back, Sung-Ki;Kang, Tae-Jin;Lee, Kyung-Woo
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.68-72
    • /
    • 1999
  • In an effort to construct a structure under the design principle of minimal use of materials for maximum performances, a discrete gradient structure has been introduced in laminate composite systems. Using a sequential linear programming method, the gradient structure of composites to maximize the buckling load was optimized in terms of fiber volume fraction and thickness of each layer. Theoretical optimization results were then verified with experimental ones. The buckling load of laminate composite showed maximum value with the outmost [$0^{\circ}$] layer concentrated by almost all the fibers when the ratio of length to width(aspect ratio) was less than 1.0. But when the aspect ratio was 2.0, the optimum was determined in a structure where the thickness and fiber volume fraction were well balanced in each layer. From the optimization of gradient structure, the optimal fiber volume fraction and thickness of each layer were proposed. Experimental results agreed well with the theoretical ones. Gradient structures have also shown an advantage in the weight reduction of composites compared with the conventional homogeneous structures.

  • PDF

감자 껍질 , Guar gum 및 Polydextrose 첨가에 의한 백설기의 품질특성 변화 (Effect of Addition of Potato peel , Guar gum , Polydextrose on Quality of Backsulgies)

  • 최영선;김영아
    • 한국식품조리과학회지
    • /
    • 제8권3호
    • /
    • pp.333-341
    • /
    • 1992
  • The physicochemical, rheological and sensory characteristics of 'BACKSULGIES', which was added with potato peel, guar gum or polydextrose, were investigated. The maximum acceptable addition ratio of dietary fiber to 'BACKSULGI' was 10%. And optimal addition ratio was 3% for all samples. The water binding capacity was affected by dietary fiber sources and incubation conditions (temperature and time). The Guar gum had me highest value of water binding capacity. The solubility was highly related with water binding capacity and me swelling power was increased with temperature increment. The degree of gelatinization was not significantly different with dietary fiber sources. But me values of gelatinization of 'BACKSULGIES' added with dietary fibers were significantly higher than mose of 'BACKSULGI' with no dietary fiber. Generally hardness and brittleness incresed along with storage time. But me hardness of 'BACKSULGIES' added with dietary fibers was significantly lower man those of 'BACKSULGI' with no dietary fiber. The retardation effect of dietary fibers for retrogradation of 'BACKSULGIES' was also proved by time constant determination of Avrami equation. Sernsory evaluation revealed that me addition of dietary fibers did not reduce the organoreptic quality. Therefore potato peel 3%, guar gum 3%, polydextrose 3% were optimum addition ratio which could be accepted as conventional 'BACKSULGI'. As me results of this study, it was proved mat the additions of dietary fibers to 'BACKSULGI' had the retardation effect of retrogradation.

  • PDF

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.