• 제목/요약/키워드: Fiber Pull-Out

검색결과 137건 처리시간 0.023초

SiCw/Al 복합재료의 열처리에 따른 계면 현상에 관한 연구 (A Study on the Interfacial Phenomena As Heat treatment of SiCw/Al Composites)

  • 오혁진;방명성;이의길;남승의
    • 한국주조공학회지
    • /
    • 제12권6호
    • /
    • pp.464-470
    • /
    • 1992
  • In the present study, the effects of Al/SiC interface reaction and the formation of $Al_4C_3$ compounds on the mechanical properties of the Al/SiC composites prepared by squeeze casting were investigated. After squeeze casting, the size of dendrites in Al without whiskers were larger than those with whiskers. The hardness of composite materials (about 72 Hv) was found to be approximating 40% higher than that of matrix metal (29Hv), which gradually increases which heat treatment Time showing maximum hardness at 12hr. The observation of increasing number of compounds in 12hrs heat treatment suggests that these compounds are responsible for the increase of hardness. By X-ray diffraction studies, those compounds were identified as $Al_4C_3$, (Al, Si). And intensity of Si peak increased. The tensile strengh of composite materials was gradually decresed by heat tretment, which was in contrast to the behavior of hardeness. With incresing heat tretment time, the fracture mode of composite materials was changed from large dimples and pull-out form of fiber to the fracture and rupture foum of fiber.

  • PDF

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구 (An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement)

  • 노치훈;장낙섭;오홍섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.73-81
    • /
    • 2022
  • 최근 구조물의 사용연한이 증가함에 따라 다양한 요인에 의해 철근이 부식되어 구조물의 내하력이 감소하는 문제들이 발생하고 있다. 이를 해결하기 위하여 내식성, 경량성, 고인장강도를 갖는 FRP 보강근의 부착특성에 대한 연구가 활발히 진행중이나, 콘크리트에 매립된 격자형 CFRP 보강재의 부착특성에 관한 연구는 미흡한 실정이다. 따라서 격자형 CFRP 보강재를 철근의 대체재로 사용하고 사용성 측면에서 부착특성을 평가하기 위해, 격자형 CFRP 보강재의 종방향 부착길이와 횡방향 격자길이를 변수로 하여 직접인발시험을 수행하였다. 이를 통해 격자형 CFRP 보강재의 부착하중-슬립 곡선을 도출하였으며, 부착거동을 분석하였다. 총 부착하중 식은 종방향 부착길이의 부착력과 횡방향 격자의 전단력의 합으로 제안하였으며, 부착하중-슬립곡선의 면적을 전체 일로 표현하여 슬립량에 대한 에너지 소산량의 변화를 분석하여 횡방향 격자가 부착력에 미치는 영향에 대하여 검토하였다.

강섬유보강콘크리트내 강섬유의 인장보강효과 (Effects of Tensile Reinforcement of Steel Fibers in SFRC)

  • 김규선;이차돈;박제선;심종성;최기봉
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.76-81
    • /
    • 1992
  • Short, randomly disturbed steel fibers in concrete increase tensile strength and ductility of concrete under direct tension. These improvements are results form crack arrest mechanisms of steel fibers in concrete. These mechanisms are theoretically considered in this study and verification on the adequancy of different spacing for predicting tensile strength of SFRC are assessed. Results indicate that better correlation exists between experimental result and the spacing concept which take into account the effect of boundaries as well as vibration on reorientation of steel fibers inside concrete. Also considered is the modeling of stress-crack opening relationships in post-peak region of SFRC under tension which bass its deviation on micromechanics of fiber pull-out. Satisfactoring results are observed between tests results and the prediction of the model.

  • PDF

FRP Rebar의 부착거동 해석 (Analytical study on the Bond Behavior of FRP Rebar in Concrete)

  • 유영준;박영환;박지선;유영찬;김형열;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.636-639
    • /
    • 2004
  • Reinforced concrete structures have been used for a long time. However, corrosion problem in reinforcing steel is inevitable, which results in the degradation of performance and the shortening of the life of structures. To overcome such problems, FRP(Fiber Reinforced Polymer) rebars have been developed. Due to their corrosion resistance and their superior mechanical properties, FRP rebars are increasingly applied to concrete structures in other countries. To obtain the composite action between FRP rebars and concrete, sufficient bond between two materials must be secured. But, the behavior of FRP rebars is different from that of steel rebars. Therefore, it is necessary to understand and develop the proper bond mechanism of FRP rebars to use them in concrete structures. This paper presents analytical results to investigate the bond-slip relationship between FRP rebars and concrete based on pull out tests.

  • PDF

평직유리섬유강화 에폭시 적층판의 기계적 특성 이방성 (Mechanical Properties Anisotropy of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates)

  • 김연직
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.15-21
    • /
    • 2009
  • The anisotropic mechanical properties were measured for the three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate. In tensile and flexural tests, axial and edge type specimens failed by pull-out of warp and fill yarns, respectively. In contrast, the thickness type specimens failed by adhesive failure process. Longitudinal cracking occurred in several of the edge type specimens during tensile test. That cracking caused pop-in in the stress-strain curve. Defects induced by improper coupon machining caused that cracking.

온도변화에 따른 열가소성 복합재료 유리섬유/폴리에틸렌의 인장파괴거동 (Temperature Effect on Tensile Fracture Behavior of Thermoplastic Glass Fiber/Polyethylene Composites)

  • 고위성;최영근
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.326-330
    • /
    • 2004
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanics characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range $60^{\circ}C\;to\;-50^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at $-50^{\circ}C$, and it tended to decrease as the temperature increased from $-50^{\circ}C$. The major failure mechanisms was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

  • PDF

인공해수중 GFRP의 피로특성에 관한 연구 (A study on fatigue properties of GFRP in synthetic sea water)

  • 김연직;임재규
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1351-1360
    • /
    • 1993
  • 본 연구에서는 수적법(hand lay up : HLU)을 이용하여 단 섬유포(chopped strand mat : CSM)형태의 유리섬유를 불포화 폴리에스테르 수지에 강화시킨 복합 적층 판을 대상으로 해수중에서 굽힘·피로시험을 실시하여 피로균열 성장거동을 관찰하고 파면관찰을 통하여 GERP의 피로특성을 검토하였다.

CFRP 복합재료의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Carbon Fiber Reinforced Plastics)

  • 고성위;김학돌;엄윤성;최영근;김형진;김재동;김엄기
    • 수산해양기술연구
    • /
    • 제38권4호
    • /
    • pp.300-306
    • /
    • 2002
  • 장섬유 CF/에폭시 복합재료를 사용하여-5$0^{\circ}C$에서 6$0^{\circ}C$ 사이의 범위에서 스팬길이를 변화시켜 충격시험으로 얻어진 임계파괴에너지의 거동을 고찰한 결과는 다음과 같다. 1. CF/에폭시 복합재료의 온도 변화에 따른 임계파괴에너지 GIC는 동일한 스팬길에서는 실온의 경우가 가장 높고, 6$0^{\circ}C$, -15$^{\circ}C$ 그리고 -5$0^{\circ}C$의 순으로 낮게 나타났다. 2. CF/에폭시 복합재료의 스팬길이의 변화에 대한 임계 파괴에너지 GIC는 동일한 온도조건하에서는 스팬길이가 20mm인 경우가 가장 높게 나타났으나 불안정하며, 스팬길이는 40mm인 경우 임계파괴에너지 GIC는 가장 낮게 나타났으나 실험치의 흩어짐을 고려할 때 40mm인 경우의 시험편이 더 적절한 조건이라 생각된다. 3. 본 실험에 사용한 재료의 파괴기구는 섬유의 풀아웃, 섬유와 매트릭스 사이의 디본딩 그리고 매트릭스의 변형을 관찰할 수 있었으며, 이와 같은 파괴기가구 종합적으로 상호작용한다고 생각된다.

GF/PE 복합재료의 인장파괴거동에 관한 연구 (A Study on the Tensile Fracture Behavior of Glass Fiber Polyethylene Composites)

  • 엄윤성;고성위
    • 수산해양기술연구
    • /
    • 제39권2호
    • /
    • pp.158-163
    • /
    • 2003
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanic characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range 6$0^{\circ}C$ to -5$0^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at -5$0^{\circ}C$, and it tended to decrease as the temperature increased from -5$0^{\circ}C$. The major failure mechanism was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.