• Title/Summary/Keyword: Fiber Orientation Function

Search Result 53, Processing Time 0.029 seconds

Studies on the Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded

  • Kim, Han-Seong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.75-76
    • /
    • 2003
  • Current efforts to establish links between geometrical features and mechanical performance of nonwoven fabrics in general, and of point-bonded (spot-bonded) nonwovens in particular, would be served significantly by the measurements of Fiber Orientation Distribution Function (ODF) and tensile modulus which occurs during controlled-deformation experiments. Image analysis technique (using the Fast Furier Transform) is used to quantify the fiber orientation distribution. The results suggest that, within a typical window of processing conditions, ODF has a significant influence on the mechanical anisotropy. The data also suggest that mechanical anisotropy of thermally point-bonded nonwovens is likely to be governed by different stress mode according to the applied macroscopic tensile direction.

  • PDF

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

Numerical Simulation for the Variation of the Fiber Orientation Distribution according to the Flow of High-Flow Steel-Fiber Reinforced Mortar (고유동 강섬유보강 모르타르의 유동에 따른 섬유의 방향성 분포특성 변화의 예측)

  • Kang, Su-Tae;Kim, Jin-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.639-646
    • /
    • 2009
  • High-flow steel-fiber reinforced mortar may induce a certain fiber orientation distribution in the process of placing and thus have an influence on the tensile properties. In this paper, the variation of the fiber orientation distribution according to the flow of high-flow steel-fiber reinforced mortar was estimated in numerical simulation. The analytical results present that the major variation of fiber orientation distribution is made within 150mm of flow distance, thereafter the tendency of the fiber orientation distribution is not noticeable even though the peak of distribution density in the orientation parallel to the flow direction get bigger along the distance. Considering the close relation between the fiber orientation and the tensile behavior of composite, prediction of fiber orientation distribution make it possible to predict the variation in the tensile behavior of high-flow steel-fiber reinforced mortar according to the flow.

The Effect of Mold Shapes on the Fiber Orientation of Welding Parts for Injectin Molding of Fiber Reinforced Polymeric Composites (섬유강화 고분자 복합재료의 사출성형에 있어서 웰드부의 섬유배향에 미치는 금형형상의 영향)

  • Kang, M. G.;Choi, Y. S.;Kim, H.;Lee, D. G.;Han, G. Y.;Kim, E. G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.457-460
    • /
    • 2000
  • Injection molding is the most widely used process for the industrial forming of plastic articles. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation·orientation and infection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of welding parts in injection-molded products is assessed. And the effects of fiber content and injection mold shapes on the fiber orientation in case of fiber reinforced polymeric composites are studied. experimentally.

  • PDF

Accuracy of lntersection Counting Method in Measurement of Short Fiber Orientation Distribution by lmage Processing (화상처리에 의한 단섬유배향각 분포측정에 있어서 교점계수법의 정밀도)

  • 이상동;이동기;한길영;김이곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.556-560
    • /
    • 1996
  • In order to examine thd accuracy of intersection counting method, the fiber orientation distribution of simulation figure platted by PC is measured using image processing. The fiber orientation distribution obtained by an image processing method is compared with those by the intersection counting method. The result shows that the errors of the intersection counting method are large because its measurement is made by the cross point of the scanning line and the fiber.

  • PDF

A Study on Fiber Orientation by Image Processing during Press Molding of Long Fiber-Reinforced Thermoplastic Sheet (장섬유강화 고분자복합판의 프레스성형에 있어서 화상처리에 의한 섬유의 배향에 관한 연구)

  • 조선형;이동기;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.834-842
    • /
    • 1991
  • 본 연구에서는 화상처리에 이용되는 차분오퍼레이터중 Sobel오퍼레이터를 이 용하여 성형품의 윤랑선유추출을 하여, 섬유배향각분포를 구하고, Prewitt 오퍼레이터 의 경우와 비교한다. 또 프레스성형시 발생하는 장섬유의 2차원배향상태를 파악하기 위하여 섬유배향함수에 미치는 명종 성형조건의 영향에 대한 결과를 보고한다.

Fiber orientation distribution of reinforced cemented Toyoura sand

  • Safdar, Muhammad;Newson, Tim;Waseem, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • In this study, the fiber orientation distribution (FOD) is investigated using both micro-CT (computerized tomography) and image analysis of physically cut specimens prepared from Polyvinyl Alcohol (PVA) fiber reinforced cemented Toyoura sand. The micro-CT images of the fiber reinforced cemented sand specimens were visualized in horizontal and vertical sections. Scans were obtained using a frame rate of two frames and an exposure time of 500 milliseconds. The number of images was set to optimize and typically resulted in approximately 3000 images. Then, the angles of the fibers for horizontal sections and in vertical section were calculated using the VGStudio MAX software. The number of fibers intersecting horizontal and vertical sections are counted using these images. A similar approach was used for physically cut specimens. The variation of results of fiber orientation between micro-CT scans and visual count were approximately 4-8%. The micro-CT scans were able to precisely investigate the fiber orientation distribution of fibers in these samples. The results show that 85-90% of the PVA fibers are oriented between ±30° of horizontal, and approximately 95% of fibers have an orientation that lies within ±45° of the horizontal plane. Finally, a comparison of experimental results with the generalized fiber orientation distribution function 𝜌(θ) is presented for isotropic and anisotropic distribution in fiber reinforced cemented Toyoura sand specimens. Experimentally, it can be seen that the average ratio of the number of fibers intersecting the finite area on a vertical plane to number of fibers intersecting the finite area on a horizontal plane (NVtot/NHtot) cut through a sample varies from 2.08 to 2.12 (an average ratio of 2.10 is obtained in this study). Based up on the analytical predictions, it can be seen that the average NVtot/NHtot ratio varies from 2.13 to 2.17 for varying n values (an average ratio of 2.15).

Flexural performance and fiber distribution of an extruded DFRCC panel

  • Lee, Bang Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • This paper presents the mix composition and production method that was applied to an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel, as well as the flexural performance, represented by deformation hardening behavior with multiple cracking. The effect of fiber distribution characteristics on the flexural behavior of the panel is also addressed. In order to demonstrate the fiber distribution effect, a series of experiments and analyses, including a sectional image analysis and micromechanical analysis, was performed. From the experimental and analysis results, it was found that the flexural behavior of the panel was highly affected by a slight variation in the mix composition. In terms of the average fiber orientation, the fiber distribution was found to be similar to that derived under the assumption of a two-dimensional random distribution, irrespective of the mix composition. In contrast, the probability density function for the fiber orientation was measured to vary depending on the mix composition.

Microstructure and Impactive Flexural Vibration Characteristics of Glass-Fabric/Epoxy Composite Beams (유리직물/에폭시 복합재료 보의 내부구조와 충격굽힘진동특성)

  • 서지웅;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.53.1-56
    • /
    • 1999
  • The vibration behavior of glass-fabric reinforced plastic(GFRP) composite beams subjected to various transverse impacts has been investigated as a function of fiber orientation and void fraction. Theoretical results of resonant frequency damping coefficient and modal amplitude dispersion using the Euler-beam theory were obtained along with the finite element analysis which were compared with experimental ones Consequently it was shown that the transverse vibration characteristics were largely affected by fiber orientation and void fraction.

  • PDF