• Title/Summary/Keyword: Fiber Manufacturing

Search Result 835, Processing Time 0.028 seconds

Manufacturing and Physical and Chemical Characteristics of Fruit Leathers Using Flesh and Pomace of Japanese Apricots (Prunus mume Sieb. et Zucc) (매실과육과 매실착즙박을 이용한 Fruit leather의 제조와 그 특성)

  • Kang, Min-Young;Chung, Young-Min;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1536-1541
    • /
    • 1999
  • Fruit leathers were manufactured from flesh and pomace of Japanese apricots and evaluated for their physical, chemical, microbiological and sensory properties. The contents of total dietary fiber(TDF) in Japanese apricot leathers(JAL) and Japanese apricot pomace leathers(JAPL) were 4.06% and 7.82%, respectively. One hundred grams of leather contained 368kcal in JAL and 352kcal in JAPL. Water activities of fruit leathers were 0.36 in JAL and 0.48 in JAPL. None of the factors had an effect on the microbiological counts of any of the organisms. The L, a and b values of the fruit leathers were higher in those made of JAF than those made of JAP. The fruit leathers made of JAF were harder than those made of JAP. Sensory panelists preferred fruit leathers made of JAP to those made of JAF in all attributes, except for their color.

  • PDF

A Scientific Analysis of Gold Threads Used in Donggungbi-Wonsam(Ceremonial Robe Worn by a Crown Princess, National Folklore Cultural Heritage No.48) (동궁비 원삼에 사용된 금사의 과학적 분석)

  • Lee, Jang-Jon;An, Boyeon;Han, Kiok;Lee, Ryangmi;Yoo, Ji Hyun;Yu, Ji A
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.525-535
    • /
    • 2021
  • This study identified material properties through scientific analysis on Jikgeumdan(satin with gold threads) from Donggungbi-Wonsam and the gold threads used in the embroidery. The Donggungbi-Wonsam's base of gold threads were estimated to have used mulberry fiber's Korean paper(Hanji) because non-wood-based fibers were observed. The X-ray spectrometer showed that the Tongsuseulan of Donggungbi-Wonsam was a flat gold thread of pure gold and Jikgeumdan of flat silver thread of its Saekdong and Hansam. High sulfur levels were detected in the flat silver thread, which appeared to have formed silver sulfide by either manufacturing process using sulfur or conservation environment. he dragon insignia's embroidery is also described as two types twisted gold threads; pure gold and alloying-gold and silver. while dragon insignia's border line is decorated with a twisted gold thread of pure gold. In particular, it was investigated that adhesives such as an animal glue, a protein-based compound by gas chromatography mass spectrometry. Additionally, XRF and Raman spectroscopy analysis on the mixture substances between the metal surface and the base paper of gold threads identified talc and quartz in the gold threads and Seokganju(hematite) in the flat silver threads.

Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites (3D Textile 프리폼 제조 및 복합재료 기계적 특성 연구)

  • Jo, Kwang-Hoon;Klapper, Vinzenz;Kim, Hyeon-Woo;Lee, Jeong-Woon;Han, Joong-Won;Byun, Joon-Hyung;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • The aircraft composites wing parts are usually integrated with adhesive or fastener. These laminated composites have weak interlaminar strength, which can lead to delamination. In order to compensate the disadvantages of laminated composites, it is possible to improve the strength, durability, shock and fatigue resistance by reinforcing the fiber in the thickness direction. In addition, using a single structure near-net-shape saves the manufacturing time and the number of fasteners, thus can reduce the overall cost of the composite parts. In this study, compression test, tensile test and open-hole tensile test are carried out for three structural architecture of 3D (three-dimensional) textile preforms: orthogonal(ORT), layer-to-layer(LTL) and through-the-thickness(TTT) patterns. Among these, the orthogonal textile composite shows the highest Young's modulus and strength in tensile and compression. The notch sensitivity of the orthogonal textile composite was the smallest as compared with UD (unidirectional) and 2D (two-dimensional) fabric laminates.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Hydrogen Permeation Performance of Pd, Pd/Cu Membranes Manufactured through Electroless Plating (무전해 도금을 이용해 제작한 Pd, Pd/Cu 분리막의 수소 투과 성능)

  • Jeong In, Lee;Min Chang, Shin;Xuelong, Zhuang;Jae Yeon, Hwang;Chang-Hun, Jeong;Jung Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.456-464
    • /
    • 2022
  • Hydrogen permeation performance was analyzed by manufacturing Pd and Pd-Cu membranes through electroless plating. As a support for the Pd and Pd-Cu membranes, α-Al2O3 ceramic hollow fiber were used. Pd-Cu membrane was manufactured through sequential electroless plating, and then annealing was performed at 500°C, for 18 h in a hydrogen atmosphere to make Pd and Cu alloy. After annealing, the Pd-Cu membrane confirmed that the alloy was formed through EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction) analysis. In addition, the thickness of the Pd and Pd-Cu plating layers were measured to be about 3.21 and 3.72 µm, respectively, through SEM (Scanning Electron Microscope) analysis. Hydrogen permeation performance was tested for hydrogen permeation in the range of 350~450°C and 1~4 bar in hydrogen single gas and mixed gas (H2, N2). In a single hydrogen gas, Pd and Pd-Cu membranes have flux of up to 54.42 and 67.17 ml/cm2⋅ min at 450 °C and 4 bar. In the mixed gas, it was confirmed that the separation factors of 1308 and 453 were obtained under the conditions of 450 °C and 4 bar.

Effect of Lentil and Opuntia ficus-indica Mixtures Addition on Quality Characteristics of Sausages (렌틸과 백년초의 혼합첨가가 소시지의 품질특성에 미치는 영향)

  • Lee, Namrye;Kim, Kyoung Hee;Yook, Hong Sun
    • Korean journal of food and cookery science
    • /
    • v.31 no.4
    • /
    • pp.431-440
    • /
    • 2015
  • This study was performed to evaluate the quality characteristics of sausages after addition of lentil and Opuntia ficus-indica ethanol extract. Seven sausages were prepared as follows : F0 (control), F1 (5% lentils), F2 (5% lentils + 1% Opuntia ficus-indica), F3 (5% lentils + 3% Opuntia ficus-indica), F4(10% lentils), F5 (10% lentils + 1% Opuntia ficus-indica), and F6 (10% lentils + 3% Opuntia ficus-indica). Addition of lentils increase dietary fiber and starch in sausage while lowering fat content. Starch is used in manufacturing sausage to stabilize and increase viscosity. Opuntia ficus-indica contains dietary fibers and therefore addition of it to sausage increases dietary fiber, much like lentil addition. Lightness decreased and yellowness increased in all treatments. Redness was lowered by lentil addition but enhanced by addition of Opuntia ficus-indica. Redness in F3 and F5 were similar with control. But, F5 was more similar with control in all colors. Addition of lentil and Opuntia ficus-indica improved texture in hardness, springiness, gumminess, and chewiness. In sensory evaluation, color was lowered but taste was heightened by adding lentil and Opuntia ficus-indica extract. From results of this study, we could conclude that addition of mixture of lentil and Opuntia ficus-indica made sausage low in fat, with high in dietary fibers and starch. In addition, texture was increased and taste was better. F5 had the most similar color to control. We found out the optimal amounts of the two ingredients, lentil and Opuntia ficus- indica extract, were 10% and 1%, respectively.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF

Technical Development of Korean Type Hot sauce (한국식 핫소스의 제조기술 개발)

  • Kwon, Dong-Jin;Lee, Sung;Yoon, Ki-Do;Han, Nam-Su;Yoo, Jin-Yong;Jung, Kun-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1014-1020
    • /
    • 1996
  • To develope a manufacturing process of the Korean type hot sauce, ingredients and chemical components of the imported hot sauces were investigated. The major ingredients of the imported hot sauce were chili, vinegar and salt. Chemical analysis of the imported hot sauce showed: moisture; 44.73-95.66%, total nitrogen; 0.11-1.06%, reducing sugar; 0.03-3.18%, crude fiber; 0.42-2.51%, salt; 0.87-10.44%, pH; 3.22-4.05, titratable acidity; 1.18-3.62%, capsanthin; 0.44-1.06% and capsaicin; 2.40-4.28 mg%. With the red pepper powder and/or kochujang, 20 Korean type hot sauces were prepared. Chemical analysis of the Korean type hot sauce showed: moisture; 53.07-78.30%, total nitrogen; 0.34-0.68%, reducing sugar; 1.60-4.34%, curde fiber; 1.31-2.54%, salt; 4.07-5.56%, pH; 3.37-2.54, titratable acidity; 1.15-3.06%, capsanthin; 0.11-1.36% and capsaicin; 0.55-1.42 mg%. Chemical components except capsaicin of the Korean type hot sauce were similar to those of the imported one. As the results of sensory evaluation on the 20 Korean type hot sauces with red pepper powder and/or kochujang developed, three Korean type hot sauces were finally selected. As compared with Sriracha hot sauce, an imported hot sauce, the Korean type hot sauces were evaluated to be superior to the imported one.

  • PDF

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.