• Title/Summary/Keyword: Fiber Laser

Search Result 866, Processing Time 0.028 seconds

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

Passively Q-switched Erbium Doped All-fiber Laser with High Pulse Energy Based on Evanescent Field Interaction with Single-walled Carbon Nanotube Saturable Absorber

  • Jeong, Hwanseong;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.203-206
    • /
    • 2017
  • We report a passive Q-switching of an all-fiber erbium-doped fiber laser delivering high pulse energy by using a high quality single-walled carbon nanotube saturable absorber (SWCNT-SA). A side-polished fiber coated with the SWCNT is employed as an in-line SA for evanescent wave interaction between the incident light and the SWCNT. This lateral interaction scheme enables a stable Q-switched fiber laser that generates high pulse energy. The central wavelength of the Q-switched pulse laser was measured as 1560 nm. A repetition rate frequency of the Q-switched laser is controlled from 78 kHz to 190 kHz by adjusting the applied pump power from 124 mW to 790 mW. The variation of pulse energy from 51 nJ to 270 nJ is also observed as increasing the pump power. The pulse energy of 270 nJ achieved at maximum pump power is 3 times larger than those reported in Q-switched all-fiber lasers using a SWCNT-SA. The tunable behaviors in pulse duration, pulse repetition rate, and pulse energy as a function of pump power are reported, and are well matched with theoretical expectation.

Laser micromachining of optical endoscopic fiber for viewing (시야각 조절이 가능한 내시경 광섬유 레이저 가공 기술)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Shin, Jung-Won
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • In this paper, controlling shape of optical fiber tip for endoscope was investigated for eliminating blind spot. The blind spot of endoscope is generated by divergence angle of optical fiber, so it is easy to generate blind spot when tightly focusing. In order to eliminate this region, fiber tip is necessary to be controlled as convex or concave. Illumination simulation of convex and concave type of fiber tip in the endoscope was in progress, so the distance of non- blind region was investigated in each case. As well as the simulation, the tip was fabricated as concave shape by UV laser machining. Then the beam radiation was measured to observe the blind region. The result showed that controlling the fiber tip as convex or concave shape makes the narrow blind region of illumination in endoscope.

Rigorous Analysis on Ring-Doped-Core Fibers for Generating Cylindrical Vector Beams

  • Kim, Hyuntai;Kwon, Youngchul;Vazquez-Zuniga, Luis Alonso;Lee, Seung Jong;Park, Wonil;Ham, Youngsu;Song, Suhyung;Yang, Joong-Hwan;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.650-656
    • /
    • 2014
  • We propose a novel active fiber design for selectively generating cylindrical vector beams (CVBs) or cylindrical vector modes (CVMs) which can be applied to conventional fiber lasers. A fiber is designed to have a ring-shaped core refractive index profile which can lead to the best overlap between the active dopant distribution profile and the lowest-order CVM (LCVM) field profile. Therefore, the overlap factor (OVF) of the LCVM becomes even higher than that of the fundamental mode. We emphasize that this condition cannot be satisfied by a conventional step-index core fiber (SICF) but by the ring-doped core fiber (RDCF). Because the lasing threshold is inversely proportional to the OVF, the LCVM can predominantly be stimulated even without going through special procedures to impose extra loss mechanisms to the fundamental mode. We numerically verify that the OVF of the LCVM with the doped ions can significantly exceed that of the fundamental mode if the proposed fiber design is applied. In addition, an RDCF of the proposed fiber design can also operate in a regime containing no higher-order modes besides the LCVM, so that it can selectively and efficiently generate the LCVM without being disrupted by the parasitic lasing of the higher-order modes. We highlight that an optimized RDCF can lead to a >30 % higher OVF ratio than a SICF having the same doped area. The proposed model is expected to be useful for enhancing the efficiency of generating CVBs in an all-fiber format.

Welding characteristics of Metal bellows using a Fiber laser (파이버 레이저를 이용한 밸로우즈 용접특성에 관한연구)

  • Kim, Jeng-O;Lee, Jae-Hoon;Lee, Seung-Woo
    • Laser Solutions
    • /
    • v.16 no.3
    • /
    • pp.22-26
    • /
    • 2013
  • Fiber laser welding was performed on SUS Materials metal bellows. The results can be summarized as follows: When we tried to change welding focus location. we get the best welding line when focus location placed 0mm. In product welding, We could make a satisfactory product in constant area by applying optimized conditions and show a table that is able to help producer easily to apply it to manufacturing. In comparison with existing TIG and plasma welding, welded bellows by fiber laser has faster processing speed, smaller thermal effect, very narrow welding area and fine surface.

  • PDF

Development of remote welding system using fiber laser (화이버 레이저 원격용접 기술개발)

  • Kim K. S.;Jung C. H.;Kim I. H.;Chang I. S.;Lee H. B,
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.27-30
    • /
    • 2005
  • Nowadays, most automotives companies are making use of laser welding in car body assembly shop. But even though laser welding is better than resistance spot welding in many points, its application has been limited to special technology for manufacturing. The paper introduces in the field of remote welding system (RWS) to improve the process efficiency of laser welding. Positioning time of RWS between welding stitches is dramatically reduced to zero. It is a kind of solutions to generalize laser welding in mass production. This RWS consists of fiber laser, industrial robot and 3-axis scanner.

  • PDF

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Determination of the Dissociation Constant of Thymol Blue with Diode-Laser/Fiber-Optic Thermal Lensing Spectroscopy

  • 김성호;노영순
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.822-824
    • /
    • 1998
  • The simple and convenient measurement of the dissociation constant of an indicator, thymol blue, was achieved by using a portable diode-laser/fiber-optic thermal lensing spectroscopy, which consisted of a visible diode laser, a photodiode, and an optical fiber. It gives comparable results to the cited value obtained from a conventional UV/VIS spectroscopy.

Variations of the Linewidth Enhancement Factor of Strained MQW DFB Laser with Output Power (Strained MQW DFB 레이저의 광출력에 따른 Linewidth Enhancement Factor의 변화)

  • 오윤경;곽계달
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.15-20
    • /
    • 1998
  • The linewidth enhancement factor $\alpha$ and fiber dispersion of 1.55 ${\mu}{\textrm}{m}$ strained multi-quantum well laser diodes are measured using small signal power modulation transfer function in a dispersive fiber. The measured fiber dispersion values are between 16.766 and 16.786ps/nm/km and these are the expected values from standard single mode fiber. To measure the $\alpha$ parameter in the actual operational range of the laser diodes, the dependence of $\alpha$ on laser output power is measured. The $\alpha$ parameter increases linearly as the power of the laser diode increases. This result can explain the non-linear gain effect on the $\alpha$ parameter more accurately than any other measurements.

  • PDF

Construction and Characterization of Travelling Wave Type Single Mode Fiber Laser Using a Fiber Grating (광섬유격자를 이용하는 진행파형 단일모드 광섬유레이저의 제작과 특성 측성)

  • 김택중;박희갑;이동한
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.296-301
    • /
    • 1995
  • A single-mode erbium-doped fiber laser is constructed by using a intracore fiber Bragg grating and a unidirectional fiber loop mirror. The laser cavity is designed in such a way that the laser beam forms a travelling wave in the gain medium by placing the erbium-doped fiber inside the unidirectional loop and that the wavelength-selective feedback is made from the outside of the loop by a fiber grating with 0.2 nm reflection linewidth. An additional fiber ring resonator is constructed and used as an optical spectrum analyzer to observe the variation of the laser mode spectra. As the result, relatively stable single mode, single polarization output is observed for the most of the time except some mode hoppings in minute scale due to enviommental temperature variations. tions.

  • PDF