• Title/Summary/Keyword: Fiber Identification Method

Search Result 47, Processing Time 0.02 seconds

Real-time Identification of the Draft System Using Neural Network

  • Chun Soon-Yong;Bae Han-Jo;Kim Seon-Mi;Suh Moon-W.;Grady P.;Lyoo Won-Seok;Yoon Won-Sik;Han Sung-Soo
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.62-65
    • /
    • 2006
  • Making a good model is one of the most important aspects in the field of a control system. If one makes a good model, one is now ready to make a good controller for the system. The focus of this thesis lies on system modeling, the draft system in specific. In modeling for a draft system, one of the most common methods is the 'least-square method'; however, this method can only be applied to linear systems. For this reason, the draft system, which is non-linear and a time-varying system, needs a new method. This thesis proposes a new method (the MLS method) and demonstrates a possible way of modeling even though a system has input noise and system noise. This thesis proved the adaptability and convergence of the MLS method.

Consideration of Analysis Method of Asbestos and Existing Condition for Fibrous Materials in Domestic Air (국내 공기 중 섬유상 물질의 존재실태와 석면의 분석방법에 대한 고찰)

  • Hwang, Jinyeon;Oh, Jiho;Lee, Hyomin;Lee, Jinhyun;Son, Byeongseo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.165-171
    • /
    • 2015
  • Dust samples collected from air in metropolitan areas of Busan and Ulsan were analyzed by phase contrast microscopy, phase contrast dispersion microscopy and SEM. Asbestos concentration in dust samples was lower than detection limit. Many fibrous materials were observed in dust samples, but most of them were organic fibers. Inorganic fibers such as rock fiber, ceramic fiber and gypsum were contained in the samples and non-fibrous minerals such as quartz, calcite and feldspar were also occasionally observed. Domestic law requires that asbestos in air dust is mainly analyzed by phase contrast microscopy. From this study, however, precise analysis of asbestos was almost impossible by this method only. As indicated in JIS method of Japan, therefore, count and identification of asbestos were more efficient by dispersion staining method after removing organic materials in samples by low temperature incinerator.

The Analysis of Surface Degradation Mechanism on PRP(epoxy/glass fiber) by Corona Charging Properties (코로나 대전 특성을 이용한 FRP의 표면 열화메커니즘의 해석)

  • Lee, Baek-Su;Im, Gyeong-Beom;Jeong, Ui-Nam;Park, Jong-Gwan;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.373-378
    • /
    • 1999
  • In order to analyse the degradation mechanism of polymer materials for outdoor condition, FRP laminate was exposed to high temperature and ultraviolet rays. Then, thedegradation process was evaluated by comparing contact angle, surface potential decay, and polarity effect respectively. Especially, the analysis of surface degradation phenomena by corona charging method showed the exact correlation with the result of chemical properties. Therefore we can confirm that the application of corona charging method on the identification of degradation process is very useful. If this method is usedin degradation studies on the polymer surface, it will be more effective on the surface analysis of polymer insulators. With corona charging method and chemical spectrum analysis, it was possible concretely to define degradation process on the polymer surface exposed at the situation of different environmental conditions.

  • PDF

The Nigrostriatal Tract between the Substantia Nigra and Striatum in the Human Brain: A Diffusion Tensor Tractography Study

  • Yeo, Sang Seok;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.388-390
    • /
    • 2020
  • Objectives: The nigrostriatal tract (NST) connect from the substantia nigra pars compacta to the striatum. A few previous studies have reported on the NST in the Parkinson's disease using a proboblistic tractography method. However, no study has been conducted for identification of the NST using streamline DTT technique. In the current study, we used streamline DTI technique to investigate the reconstruction method and characteristics of the NST in normal subjects. Methods: Eleven healthy subjects were recruited in this study. The NST from the substantia nigra of the midbrain and the striatum of basal ganglia was reconstructed using DTI data. Fractional anisotropy, apparent diffusion coefficient (ADC) values and fiber numbers of the NST were measured. Results: In all subjects, the NST between the substantia nigra of the midbrain and the striatum. Mean values for FA, ADC, and tract volume were 0.460, 0.818, and 154.3 in the right NST, and 0.485, 0.818, and 176.3 in the left NST respectively. Conclusions: we reconstructed the NRT from the substantia nigra of the midbrain and the striatum of the basal ganglia using streamline tractography method. We believe that the findings and the proposed streamline reconstruction method of this study would be useful in future researches on the NST of the human brain.

Parametric and Wavelet Analyses of Acoustic Emission Signals for the Identification of Failure Modes in CFRP Composites Using PZT and PVDF Sensors

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.520-530
    • /
    • 2007
  • Combination of the parametric and the wavelet analyses of acoustic emission (AE) signals was applied to identify the failure modes in carbon fiber reinforced plastic (CFRP) composite laminates during tensile testing. AE signals detected by surface mounted lead-zirconate-titanate (PZT) and polyvinylidene fluoride (PVDF) sensors were analyzed by parametric analysis based on the time of occurrence which classifies AE signals corresponding to failure modes. The frequency band level-energy analysis can distinguish the dominant frequency band for each failure mode. It was observed that the same type of failure mechanism produced signals with different characteristics depending on the stacking sequences and the type of sensors. This indicates that the proposed method can identify the failure modes of the signals if the stacking sequences and the sensors used are known.

Aqueous Glucose Solution Measurement by Three Types NIR Spectrometer (세 가지 방식의 근적외선 분광분석기를 이용한 글루코오스 수용액의 측정)

  • 백주현;강나루;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.461-468
    • /
    • 2003
  • A method is described for measuring clinically relevant levels of glucose in a pH 7.4 phosphate buffer by nearinfrared (NIR) absorption spectroscopy. Three types of NIR spectrometer, dispersive type, photo-diode array (PDA) type, and fourier transform (FT) type spectrometer were used and the performance was compared. Spectra were collected with a cuvette cell or quartz liquid fiber of 1 mm or 2 mm optical pathlength as transmittance method. Glucose absorption band appeared at second overtone, first overtone, and combination region for all systems. By use of the multivariate technigue of partial least squares (PLS) regression, glucose concentrations can be determined with a 16, 44, and 9.1 mg/d l standard error of prediction for dispersive type, photo-diode array type, and fourier transform type system, respectively. Sensitivity of spectrometer was evaluated by absorbance for the difference of 10 mg/d l glucose. Three absorption bands, second overtone, first overtone, and combination region were suited to three types systems, dispersive type, photo-diode array type, and fourier transform type systems, respectively. This investigation showed that three types NIR spectrometer were proper method for identification and quantitative analysis of glucose and possible for noninvasive blood glucose monitoring.

Identification of failure mechanisms for CFRP-confined circular concrete-filled steel tubular columns through acoustic emission signals

  • Li, Dongsheng;Du, Fangzhu;Chen, Zhi;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.525-540
    • /
    • 2016
  • The CFRP-confined circular concrete-filled steel tubular column is composed of concrete, steel, and CFRP. Its failure mechanics are complex. The most important difficulties are lack of an available method to establish a relationship between a specific damage mechanism and its acoustic emission (AE) characteristic parameter. In this study, AE technique was used to monitor the evolution of damage in CFRP-confined circular concrete-filled steel tubular columns. A fuzzy c-means method was developed to determine the relationship between the AE signal and failure mechanisms. Cluster analysis results indicate that the main AE sources include five types: matrix cracking, debonding, fiber fracture, steel buckling, and concrete crushing. This technology can not only totally separate five types of damage sources, but also make it easier to judge the damage evolution process. Furthermore, typical damage waveforms were analyzed through wavelet analysis based on the cluster results, and the damage modes were determined according to the frequency distribution of AE signals.

Delamination evaluation on basalt FRP composite pipe by electrical potential change

  • Altabey, Wael A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.515-528
    • /
    • 2017
  • Since composite structures are widely used in structural engineering, delamination in such structures is an important issue of research. Delamination is one of a principal cause of failure in composites. In This study the electrical potential (EP) technique is applied to detect and locate delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). The proposed EP method is able to identify and localize hidden delamination inside composite layers without overlapping with other method data accumulated to achieve an overall identification of the delamination location/size in a composite, with high accuracy, easy and low-cost. Twelve electrodes are mounted on the outer surface of the pipe. Afterwards, the delamination is introduced into between the three layers (0º/90º/0º)s laminates pipe, split into twelve scenarios. The dielectric properties change in basalt FRP pipe is measured before and after delamination occurred using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to delamination, a finite element simulation model for delamination location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Response surfaces method (RSM) are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured electrical potential changes of all segments between electrodes. The results show good convergence between the finite element model (FEM) and estimated results. Also the results indicate that the proposed method successfully assesses the delamination location/size for basalt FRP laminate composite pipes. The illustrated results are in excellent agreement with the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

Identification and Determination of Dietary Fibers in Citron, Jujube and Persimmon (유자, 대추, 감의 식이섬유 검색 및 정량)

  • 강민영;정윤화;은종방
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.60-64
    • /
    • 2003
  • This paper was performed to identify and determine dietary fibers considered as nutracerticals and for pharmaceuticals in Korean fruits, citron, jujube and persimmon. In the pulp and peel of citron, jujube and persimmon, the contents of dietary fiber were determined by the method of AOAC and Van Soest et al. The contents of dietary fiber(DF) in the pulp of citron were 2.61% of insoluble dietary fiber (IDF) and 1.25% of soluble dietary fiber(SDF) based on wet weight. The contents of DF in the peel of citron were 7.32% of IDF and 0.71% of SDF. The total pectin contents in the pulp and in the peel of citron were 1.77% and 3.19% respectively. The contents of IDF in the pulp of jujube were 2.98%, SDF 0.91 % calculated on wet weight basis. The contents of IDF were 16.88%, SDF 1.53% in the peel of jujube. The contents of DF in the pulp of persimmon were 1.95% of IDF and 0.31 % of SDF based on wet weight. The contents of IDF were 15.71 %, SDF 2.46% in the peel of persimmon. In dietary fibers of Korean fruits, citron, jujube and persimmon, IDE were much higher than SDF and mainly in the pulp. Therefore, they would be good source of dietary fibers.

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.