• Title/Summary/Keyword: Fiber Fermentation

Search Result 348, Processing Time 0.027 seconds

Soybean Fermented with Bacillus amyloliquefaciens (Cheonggukjang) Ameliorates Atopic Dermatitis-Like Skin Lesion in Mice by Suppressing Infiltration of Mast Cells and Production of IL-31 Cytokine

  • Cho, Byoung Ok;Shin, Jae Young;Kim, Ji-su;Che, Denis Nchang;Kang, Hyun Ju;Jeong, Do-Youn;Jang, Seon Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.827-837
    • /
    • 2019
  • The present study was conducted with the aim to investigate the ameliorative effects of a new soybean product (cheonggukjang) fermented with Bacillus amyloliquefaciens SCGB1 (SFBA) in atopic dermatitis (AD) mouse model. Visual evaluation of AD induction in the mice indicated the remarkable control of SFBA in reducing the pathological severity of AD-like skin lesions reported as the SCORAD score of AD clinical symptoms. The results revealed that SFBA reduced dorsal skin and epidermal thickness to a similar extent with prednisolone. Further analysis revealed the dominance of SFBA in restraining mast cell infiltration in the dermis; immunoglobulin-E expression in serum; and TH2 IL-4 cytokine and itch-related IL-31 cytokine in the mice skin and serum. SFBA also suppressed scratching behaviours in mice induced by compound 48/80. Further histological findings also revealed the alleviation of collagen fiber deposition in dermal skin of the AD mice model. These actions of SFBA were examined to be mediated by its suppression of the phosphorylation activation of key signalling molecules such as $NF-{\kappa}B$ and MAPK responsible for the induction of cytokine production. Thus, SFBA can be considered as a promising functional food for managing clinical, histological and immunological spectra associated with AD.

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.

Comparison of Productivity and Feed Value of Silage Corn according to the Cutting Height

  • Yan Fen Li;Li Li Wang;Young Sang Yu;Xaysana Panyavong;Hak Jin Kim;Jong Geun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.129-137
    • /
    • 2023
  • Corn silage is extensively utilized in ruminant feeding on a global scale, with substantial research efforts directed towards enhancing its nutritional worth and managing moisture content. The purpose of this study was to assess the impact of normal cutting height and elevated cutting height on whole-crop corn silage. Corn was harvested at heights of 15 cm and 45 cm above the ground, respectively, 45 days after heading. The harvested corn was cut into 2-3 cm lengths and packed into 20-liter plastic silos in triplicate. The results showed that dry matter (DM), crude protein (CP), water soluble carbohydrates (WSC), and in vitro dry matter digestibility (IVDMD) of C45 were significantly higher than those of the control, while the neutral detergent fiber (NDF) was significantly lower in C45 (p<0.05). The C15 had higher yields than C45 (p<0.05). There was no significant difference in the total digestible nutrients (TDN) yield of whole-crop corn silage. The increase in cutting height resulted in a larger change in moisture content and NDF per centimeter. After 60 days-ensiling, C45 showed significantly lower NH3-N concentrations. Moreover, C45 had significantly higher lactic acid concentration, lactic acid/acetic acid ratio, and lactic acid bacteria count compared to the control. Mold was not detected and the yeast count was less than 2 log10 cfu/g fresh matter in both control and C45. In summary, C45 improved the feeding value and fermentation quality of whole-crop corn silage at the expense of forage productivity.

Comparison study between single enzyme and multienzyme complex in distiller's dred grains with soluble supplemented diet in broiler chicken

  • Min-Jin Kwak;Dong-Jin Ha;Min Young Park;Ju Young Eor;Kwang-Youn Whang;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.398-411
    • /
    • 2024
  • Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.

Evaluation of Fermentation Ability of Microbes for Whole Crop Rice Silage Inoculant (총체 벼 사일리지용 미생물의 발효능력 평가)

  • Kim, Jong-Geun;Ham, Jun-Sang;Chung, Eui-Soo;Yoon, Sei-Hyung;Kim, Meing-Jung;Park, Hyung-Soo;Lim, Young-Chul;Seo, Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • This experiment was conducted to study on the evaluation of fermentation ability of microbes for whole crop rice silage Inoculant at National Institute of Animal Science, RDA from 2004 to 2005. We collected 28 strains of microbes from whole crop rice silage. According to acidity and growth ability, 5 strains of microbes was isolated (R4-1, R7-1, R7-2, R10-1, R12-1). The cultures of 4 strains were identified to be Lactobacillus plantarum (R4-1, R7-1, R7-2 and R10-1) and one was identified to be Lactobacillus pentosus (R12-1). Whole crop rice was harvested at the yellow ripen stage. It was ensiled in experimental silos (20ℓ capacity) with or without microbial additives (R4-1, R7-1, R7-2, R10-1, R12-1 and three commercial inoculant) and stored at room temperature for 60d. The pH value and acetic acid content of additivetreated silages were lower and lactic acid content was higher than those of the control (p<0.05). There was a trend for acetic acid content to be lowest and lactic acid to be highest in R7-1 treated silage. Crude protein (CP) contents of R7-2 treated silage was higher and acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents of R7-1 treated silage was lower (p<0.05). Although some strains of inoculant could improve silage quality, L. plantarum R7-1 was more effective as an inoculant for whole crop rice silage. This microbe was named NLRI 401 and registered in the Korea Agricultural Culture Collection.

Effect of Film Layers and Storing Period on the Fermentation Quality of Whole Crop Barley Silage (청보리 사일리지의 비닐겹수 및 저장기간에 따른 발효품질)

  • Song, Tae-Hwa;Park, Tae-Il;Park, Hyong-Ho;Yoon, Chang;Kim, Yang-Kil;Park, Jong-Chul;Kang, Chon-Sik;Son, Jae-Han;Kim, Kyong-Ho;Cheong, Young-Keun;Oh, Young-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • This study was undertaken to characterize feed value and silage quality according to storage period and film layers for whole-crop barley silage. The crude protein (CP) content increased in all silage during the storage periods compared to those before silage, this content slightly increased over the prolonged storage period but it was not significant (p>0.05). Depending on the film layers of silage, 6 layers were higher than 4 layers. The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents also increased in all silage during storage periods compared to those before silage (P<0.05), but they were maintained at similar levels during the storage period. Depending on the film layers of silage, 6 layers were higher than 4 layers. The total digestible nutrients (TDN) content decreased in all silage during the storage periods. However, it was maintained at a similar level for the duration of each storage period. Depending on the film layers of silage, 6 layers were lower than 4 layers. The pH value was decreased during the prolonged storage period and depending on the film layers, 6 layers were lower than 4 layers. In the organic acid contents during the prolonged storage period, lactic acid increased, acetic acid was lower, and butyric acid was significantly higher (p<0.05). Depending on the film layers, 6 layers showed higher levels of lactic acid and lower levels of butyric acid (p<0.05). Therefore, these results showed that 6 layer wrapping was advantageous for long term storage of whole crop barley silage, while also indicating that it is desirable to use 4 layer wrapping within a six month period.

Effect of Hormones and Short Chain Fatty Acids on CYP7A1 Gene Expression in HepG2 Cell (호르몬과 단쇄지방산이 HepG2 Cell 내에서 CYP7A1 발현에 미치는 효과)

  • Yang, Jeong-Lye;Lee, Hyun-Jung;Kim, Yang-Ha
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.573-580
    • /
    • 2005
  • Cholesterol $7\alpha-hydroxylase$ (CYP7A1) is the rate-limiting enzyme in the conversion of cholesterol to bile acids and plays a central role in regulating cholesterol homeostasis. We previously showed that a fermentable $\beta-glucan$ ingestion decreased plasma cholesterol levels due to fecal bile acid excretion elevation involved inincrease of cholesterol $7\alpha-hydroxylase$ mRNA expression and activity. It is proposed that short chain fatty acids (SCFA) produced by cecal and colonic fermentation of soluble fiber are associated with cholesterol-lowering effect of fiber. In the present study, we investigated whether CYP7A1 expression is up-regulated by short chain fatty acids or by hormones in cultured human hepatoma (HepG2) cells. Confluent HepG2 cell were incubated with acetate, propionate, or butyrate at 1 mM concentration for 24 hrs. Acetate as well as propionate increased to 1.8-fold expression of CYP7A1 mRNA than the control. Butyrate also increased 1.5-fold expression of CYP7A1 mRNA. Our data show for the first time that SCFA increase expression of CYP7A1 mRNA. Adding insulin, dexamethasone and triiodothyronine $(1\;{\mu}M)$ to HepG2 cell increased the expression of CYP7A1 mRNA to $150\%,\;173\%,\;141\%$, respectively. These results suggest that SCFA produced by cecal fermentation stimulate enteric nervous system, in which secreted some neuropeptides may be responsible for change in cholesterol and bile acid metabolism. These findings suggest that SCFA are involved in lowering plasma cholesterol levels due to the up-regulation of CYP7A1 and bile acid synthesis.

Effect of ${\alpha}-Amylase$ Treatment of Brown Rice(Goami) Alcohol Fermentation By-Product (현미(고아미) 알코올발효 부산물의 ${\alpha}-amylase$처리 효과)

  • Woo, Seung-Mi;Kim, Tae-Young;Yeo, Soo-Hwan;Kim, Sang-Burm;Kim, Mi-Hyun;Woo, Sang-Chel;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.617-623
    • /
    • 2007
  • To utilize the non-heat treated alcoholic by-products of brown rice(Goami) as food sources, the quality characteristics change according to the treatment conditions of ${\alpha}-amylase$ were evaluated. It resulted that the increase of hydrolysis temperature correspondingly increased the soluble solids, total dietary fiber and total sugar in the by-products of Goami, and the highest reducing sugar content was observed at $80^{\circ}C$. The free amino acids contents were tended to slowly decrease by the hydrolysis temperature more than $70^{\circ}C$, and the highest content of oligosaccharides were detected at the hydrolysis temperature of $80^{\circ}C$. The soluble solid according to the ${\alpha}-amylase$ concentration resulted to increase with the increase of the enzyme concentration and the total dietary fiber revealed similarly showing approximately 0.65%. The high content of reducing sugars was observed at the enzyme concentration around 0.08%(v/w). Total sugars and oligosaccharides contents tend to increase as the concentration of enzyme increased, and the content of oligosaccharides acquired at the enzyme concentration more than 0.10%(v/w) maintained to show rather similar contents. The soluble solids and total dietary fiber by hydrolysis time were found to show 6.66% and 0.65%, respectively at more than 60 min of hydrolysis, and the reducing sugars and total sugars were found to be 3,600 and 4,800 mg% in all treatment groups showing no significant difference. The content of oligosaccharides was increased with the increase of hydrolysis time, and the content was similar at more than 90 min of hydrolysis by ranging around 2,100 mg%. Based upon these results, the by-products of Goami are expected to be used as various food sources showing the highest dietary fiber and oligosaccharides contents by the hydrolysis at $80^{\circ}C$ for 90 min with the addition of 0.10%(v/w) of ${\alpha}-amylase$.

Changes in Characteristics of Brown Rice (Goami) Alcohol Fermentation By-Product by Cellulase (Cellulase처리에 따른 현미(고아미) 알코올발효 부산물의 특성 변화)

  • Woo, Seung-Mi;Jang, Se-Young;Park, Nan-Yong;Kim, Tae-Young;Yeo, Soo-Hwan;Kim, Sang-Burm;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • To utilize non-heat treated alcoholic by-products of brown rice (Goami) as food sources, the quality characteristics changes according to the treatment conditions of cellulase were evaluated. Results showed that the increase of hydrolysis temperature correspondingly increased the soluble solids and total sugar amounts in the by-products of Goami, and total dietary fiber amount was found to be around 0.67% Reducing sugar concentration was the highest at the hydrolysis temperature of $70^{\circ}C$. Maltooligosaccharides amounts were detected to be the highest at the hydrolysis temperature of $80^{\circ}C$ and were also, maltopentose and maltopentose were found. In the soluble solid, total dietary fiber, reducing sugar and total sugar according to the cellulase concentration, the content of hydrolysates with enzyme were higher than control, and the content of hydrolysates with enzyme was similar (6.30 and 0.69% 3,600 and 5,500 mg% respectively). The content of maltooligosaccharides was increased with the increase of enzyme concentration, and the content was similar at more than 0.6%(w/w) of enzyme concentration. The soluble solids and total dietary fiber by hydrolysis time were found to be 6.25% and 0.70%, respectively at more than 60 min. of hydrolysis. The content of reducing sugar, total sugar and maltooligosaccharides were increased with the increase of hydrolysis time, and the content was similar at more than 120min. of hydrolysis (3,800, 5,680 and 1,950 mg% respectively). Based upon these results, the byproducts of Goami are expected to be valuable as various food sources showing the highest dietary fiber and maltooligosaccharides contents by the hydrolysis at $80^{\circ}C$ for 120 min. with the addition of 0.6%(w/w) of cellulase.