• Title/Summary/Keyword: Fiber Dispersion

Search Result 498, Processing Time 0.026 seconds

Optimal Design Condition of Optical Links with Residual Dispersion Per Span (RDPS) Presented in Only One Single Mode Fiber Span in Each Transmission Session Respect with Optical Phase Conjugator (광 위상 공액기를 중심으로 각 전송 구획에서 하나의 단일 모드 광섬유 중계 구간에만 RDPS를 갖는 광전송 링크의 최적 설계 조건)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.594-597
    • /
    • 2012
  • Optimal link configuration in optical link with concentrated residual dispersion per span (RDPS) in only one fiber span and 0 ps/nm of RDPS in other fiber spans of each half transmission section with respect to optical phase conjugator (OPC) placed at middle of total transmission length is induced in this paper.

  • PDF

Dispersion Map Optimization and Dispersion Slope Mismatch Issue on 40 Channel x 10 Gbit/s Transmission Over 3000 km Using Standard SMF and all EDFA Amplification (표준 단일모드 광섬유와 EDFA를 이용한 10 Gb/s 40 파장다중 채널 신호의 3000 km 전송에서 분산 보상 맵 최적화와 분산 기울기 불일치 영향)

  • Kim Min-Sung;Choi Bo-Hun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.1-9
    • /
    • 2005
  • We have studied the dispersion properties of a 40 channel x 10 Gbit/s wavelength division multiplexer(WDM) transmission link using standard single mode fiber with all EDFA amplification over 30 x 100 km spans. The dispersion map of the link was investigated by adding fiber sections with positive or negative dispersion at the transmitter, within each amplifier span, and at the receiver. Optimum combinations of these dispersive fiber lengths were attained to significantly enhance the overall transmission performance.

Dispersion-managed Optical Links with the Uniform Distributions of SMF Lengths and Residual Dispersion Per Span (SMF 길이와 중계 구간 당 잉여 분산의 분포가 균일한 분산 제어 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.161-166
    • /
    • 2016
  • In high capacity and long haul optical communication systems, signal distortion is induced by chromatic dispersion and nonlinear effects of optical fibers. Dispersion management (DM) combining with mid-spans spectral inversion (MSSI) is one of the various techniques for overcoming this drawback. The most simple configuration of DM link is obtained by uniformly distributing the lengths of single mode fiber (SMF) and residual dispersion per span (RDPS) over whole fiber spans consisted of optical link. In this paper, the system performances in the uniformly distributed DM link combined with MSSI are assessed as a function of the number of fiber spans, because the system performances in this configuration are used as the significant performance criterion in other link configurations, such as the artificial distribution or the random distribution of SMF lengths and RDPS.

Characteristics of Compensation for Distorted Optical Pulse with Initial Frequency Chirp in 3 X 40 Gbps WDM Systems Adopted Mid-Span Spectral Inversion

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for distorted optical pulse of wavelength division multiplexed(WDM) channel with initial frequency chirp generated in optical transmitter. The WDM channel signal distortion is due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM) in fiber. The considered system is 3 ${\times}$ 40 Gbps intensity modulation direct detection(IM/DD) WDM transmission systems, which adopted mid-span spectral inversion(MSSI) as compensation method. We confirmed that the effect of initial frequency chirp on compensation for signal distortion due to a SPM is gradually decreased as a dispersion coefficient of fiber becomes gradually small. But, in the aspect of a compensation for signal distortion due to both SPM and XPM, the effect of initial frequency chirp on compensation is gradually decreased as a dispersion coefficient of fiber becomes gradually large.

5.12 Tb/s (128 × 43 Gb/s) WDM transmission over 200 km of medium dispersion fiber (5.12 Te/s(128채널 × 43 Gb/s) WDM 신호의 전송실험)

  • Jun, S.B.;Son, E.S.;Jung, S.P.;Chung, Y.C.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.143-145
    • /
    • 2005
  • We demonstrated 5.12-Tb/s($l28 ch \times 43 Gb/s$) WDM transmission over 200 km of medium dispersion fiber. The spectral efficiency was 0.8-(bits/s)/Hz. After transmission, the average Q-factor was measured to be 15.2 dB.

Effects of the Control Positions of NRD in Optical Link with the Artificially Distributed SMF Lengths and RDPSs on the Compensation for the Distroted WDM Channels (SMF 길이와 RDPS가 분포가 인위적으로 분포하는 분산 제어 링크에서 NRD 조절 위치에 따른 왜곡된 WDM 채널 보상 효과)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.745-746
    • /
    • 2016
  • The compensation effects of the control positions for net residual dispersion (NRD) on the distorted WDM cjannels in dispersion-managed optical links with artificially distributed single mode fiber (SMF) lengths and residual dispersion per span (RDPS) are evaluated.

  • PDF

Determination of the dispersion profile of a dispersion decreasing fiber and the input pulse amplitude for efficient adiabatic pulse compression (효과적인 단열 펄스 압축을 위한 분산감소 광섬유의 분산 특성 및 입력 펄스 진폭 결정)

  • 최봉수;서동선
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.123-130
    • /
    • 1997
  • We determine the dispersion profile of a dispersion decreasing fiber(DDF) for optimum pulse compression from a trade-off between high pulse compression and low pedestal power/short DDF length. We find that the optimum vlaue of the exponential dispersion decreasing factor .alpha. is 0.95 and that the corresponding optimum fiber length is 1.5 times of the initial soliton period. Passing through the dDF, ~10 times of pulse comparession ratio can be achieved without significant increase in pedestal power. To compress relatively broad pulses using a given DDF optimized at a specific pulse width, we also detemrine the optimum input pulse amplitude, as a function of input pulse width.

  • PDF

Measurement of Zero Dispersion Wavelength in an Optical Fiber Using the Oscillatory Behavior of Four-Wave Mixing Efficiency

  • Kim, Dong-Hwan;Kim, Sang-Hyuck;Jo, Jae-Cheol;Choi, Sang-Sam
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.20-24
    • /
    • 2001
  • Non-destructive measurement of zero-dispersion wavelength variation in a dispersion shifted fiber by four-wave mixing technique is carried out. The oscillatory behavior of the four-wave mixing efficiency is utilized for the measurement of the linear dispersion slope and zero-dispersion wavelength. A simple formula useful for engineering estimation of the characteristics of fiber four-wave mixing efficiency is presented.

Dispersion and Nonlinear Properties of Elliptical Air Hole Photonic Crystal Fiber

  • Rao, MP Srinivasa;Singh, Vivek
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.525-531
    • /
    • 2018
  • The effect of eccentricity on dispersion and nonlinear properties of a photonic crystal fiber having elliptical air holes is investigated using a fully vectorial effective index method. It is found that the effective refractive index increases with increase of eccentricity. The dependence of dispersion and nonlinear properties of the PCF on the eccentricity of the air hole is investigated. It is revealed that eccentricity of the air hole affects the zero dispersion wavelength. Further, the nonlinear properties such as mode field area, nonlinear coefficient and self phase modulation of the Photonic crystal fibers are analyzed. The mode field area increases and the nonlinear coefficient decreases with increase in eccentricity. The variation of the self phase modulation with elliptical air hole is also discussed.

Photonic True-Time Delay for Phased-Array Antenna System using Dispersion Compensating Module and a Multiwavelength Fiber Laser

  • Jeon, Hyun-Bin;Lee, Hojoon
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.406-413
    • /
    • 2014
  • An optical true-time delay beam-forming system using a tunable dispersion compensating module (DCM) for dense-wavelength division modulation (DWDM) and a multiwavelength fiber ring laser for a phased array antenna is proposed. The multiwavelength fiber ring laser has one output that includes four wavelengths; and four outputs that include only single-wavelength. The advantage of such a multiwavelength fiber ring laser is that it minimizes the number of devices in the phased array antenna system. The time delays according to wavelengths, which are assigned for each antenna element, are obtained from the tunable DCM. The tunable DCM based on a temperature adjustable Fabry-Perot etalon is used. As an experimental result, a DCM could be used to obtain the change of the beam angle by adjusting the dispersion value of the DCM at the fixed lasing wavelengths of the fiber ring laser in the proposed optical true-time delay.