• Title/Summary/Keyword: Fiber Bragg Grating Sensor(FBG sensor)

Search Result 205, Processing Time 0.02 seconds

Measurement of Pile Load Transfer using Optical Fiber Sensors (광섬유 센서에 의한 말뚝 하중전이 측정)

  • 오정호;이원제;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor

  • Ju, Minkwan;Park, Kyoungsoo;Moon, Doyoung;Park, Cheolwoo;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • A smart glass fiber reinforced polymer (SMFRP) reinforcing bar with a fiber Bragg grating (FBG) sensor was fabricated using a pultrusion technique, while ribs were formed to improve bonding between concrete and SMFRP. Then, strain of SMFRP bars were measured for a uniaxial tension test of an SMFRP bar, and a four-point bending test of concrete beams reinforced with SMFRP bars. The results of a uniaxial tension test illustrate that the strain obtained from an FBG sensor agrees well with that obtained from electrical resistance strain gauge (ERSG). Additionally, concrete beams reinforced with SMFRP bars were fabricated, and actual flexural test were performed while the strain of with an FBG sensor was compared with that of ERSG. The experimental results demonstrate that SMFRP bars can be used as reinforcement of concrete member while providing deformation information. Furthermore, SMFRP bars may provide stronger durability and smart monitoring to reinforced concrete members under corrosive environments during a service life.

Remote Measurement of a Distant Temperature and Current using Fiber Bragg Grating Sensors and Erbium-doped Fiber Ring Laser (어븀 첨가 광섬유형 링 레이저와 광섬유 격자 기반 센서를 이용한 원거리의 온도 및 전류 측정)

  • Sohn, Kyung-Rak;Shim, June-Hwan;Yang, Gyu-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1257-1262
    • /
    • 2008
  • A long-distance remote sensing of temperature and current based on a fiber Bragg grating (FBG) is proposed and demonstrated. The thermal expanding effect of the epoxy and the Er-doped fiber ring laser (EFRL) are applied to the sensor system to enhance the temperature and current sensitivity. An EFRL with a 5 km-single-mode fiber and a FBG shows a high extinction ratio of more than 60 dB and a low power fluctuation of less than 1 dB. The metal wires are used to supply the current to the sensors. When the NOA65 puts on the FBG as a thermal expanding material, the temperature and current sensitivity of the lasing wavelength shift are about $30\;pm/^{\circ}C$ and 3pm/mA, respectively. The proposed sensing scheme is useful for measurement of current or temperature at a distant object of more than several km.

A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor (복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구)

  • Bang, Hyung-Jun;Song, Ji-Yong;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF

Strain Transmission Characteristics of Packaged Fiber Bragg Grating Sensors for Structural Health Monitoring

  • Cho, Sung-In;Yoo, Seung-Jae;Kim, Eun-Ho;Lee, In;Kwon, Il-Bum;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.236-243
    • /
    • 2010
  • Fiber Bragg grating(FBG) sensor arrays can be used to monitor the mechanical behavior of the large composite structures such as wind turbine rotor blades and aircrafts. However, brittle FBG sensors, especially multiplexed FBG sensors are easily damaged when they are installed in the flexible structures. As a protection of brittle FBG sensors, epoxy packaged FBG sensors have been presented in this paper. Finite element analysis and experiments were performed to evaluate the effects of adhesives, packaging materials and the bonding layer thickness on the strain transmission. Two types of epoxy were used for packaging FBG sensors and the sensor probes were attached with various bonding layer thickness. It was observed that thin bonding layer with high elastic modulus ratio of the adhesive to packaging provided good strain transmission. However, the strain transmission was significantly decreased when elastic modulus of the adhesive was much lower than the packaged FBG sensor probe's one.

Failure detection of composite structures using a fiber Bragg grating sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 파손 검출)

  • 고종인;김천곤;홍창선
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.28-33
    • /
    • 2004
  • Failure detection in a cross-ply laminated composite beam under tensile loading were performed using a fiber Bragg grating (FBG) sensor. A Passive Mach-Zehnder interferometric demodulator was proposed to enhance sensitivity and bandwidth. The proposed FBG sensor system without active device such as a phase modulator is very simple in configuration, easy to implement and enables the measurement of high-frequency vibration with low strain amplitude such as impact or failure signal. Failure signals detected by a FBG sensor had offset value corresponding to the strain shift with vibration at a maximum frequency of several hundreds of kilohertz. at the instant of transverse crack propagation in the 90 degree layer of composite beam.

The Fabrication Method of Fiber Bragg Grating Sensor with Various Grating Length and Signal Characteristics of Reflected Spectra with Grating Length (다양한 격자 길이를 갖는 광섬유 브래그 격자 센서의 제작 기법과 격자 길이에 따른 반사 스펙트럼 특성 연구)

  • 강동훈;홍창선;김천곤
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.32-39
    • /
    • 2004
  • Among many fiber optic sensors, FBG sensors are being studied more actively than any other sensor due to good multiplexing capabilities. Recently, the application fields of FBG sensors are mainly focused on the composite materials through embedding rather than attaching on the surface. However, there are many limitations on the embedding FBG sensors into composite materials because of the birefringence effects which is induced when FBG sensors are not embedded parallel to the reinforcing fiber. In this study, the fabrication method of FBG sensors with various grating length that are easy to fabricate with good multiplexing capabilities and more stable from the birefringence effects are investigated. The signal characteristics of the FBG sensors are also verified through the cure monitoring of 2 kinds of composite materials.

On-line Strain Measurement of Rotating Blade Using Fiber Bragg Grating Sensors and Beam Coupler (광섬유 격자 센서와 빔 커플러를 사용한 회전중인 블레이드의 변형률 측정 방법)

  • Lee, In-Jae;Lee, Jong-Min;Lee, Sang-Bae;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1172-1178
    • /
    • 2006
  • Measurement of blade strain with sensors directly installed on the blade has one critical issue, how to send the sensor signal to the ground. Strain-gauges have been dominantly used to directly measure stress of a blade and either a slip ring or a telemetry system has to be used to send measured signal to the ground. However, both systems have many inherent problems and sometimes very severe limitations to be practically used. In this paper, new on-line strain monitoring method using. FBG(Fiber Bragg Grating) sensors and a beam coupler is introduced. Measurement of rotor stress using FBG sensors is nothing new, but unlike other system which installs all necessary instruments on the rotor and use telemetry system to send data to the ground, this system makes use of light's unique characteristic - light travels through space. In this new approach, single optical fiber with many FBG sensors is installed on the blade and all other necessary instruments can be installed at ground thereby giving tremendous advantages over slip ring or telemetry system. A reference sensor is also introduced to compensate the beam coupler's transmission loss change due to rotation. The suggested system's good performance is demonstrated with experiments.

Measuring strain on fiber Bragg grating sensors with a linear wavelength sweeping laser (파장 선형 스위핑 레이저를 이용한 광섬유 격자 센서의 스트레인 측정)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.420-428
    • /
    • 2021
  • In this study, linearized sweeping of a wavelength sweeping laser was realized. This technique was used to measure the strain on a fiber Bragg grating(FBG) sensor. For linear sweeping, PID control over the wavelength difference between linear and nonlinear sweeping was employed. The performance test showed that linear sweeping with a 46 nm range and a 1 kHz frequency held up well with a 99.5 % decrement in nonlinearity after the 120th feedback. When attached to a strain gage, the FBG sensor registered strain that matched the data sheet within a difference of 4.5[με]. Altogether, linear sweeping can play a leading role in monitoring a safety of large SOC structures as well as in other wavelength sweeping laser related fields.

Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment

  • Liu, Hong-biao;Zhang, Qiang;Zhang, Bao-hua
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.163-173
    • /
    • 2017
  • Structural health monitoring (SHM) of civil infrastructure using fiber Bragg grating sensor networks (FBGSNs) has received significant public attention in recent years. However, there is currently little research on the health-monitoring technology of high-piled wharfs in coastal ports using the fiber Bragg grating (FBG) sensor technique. The benefits of FBG sensors are their small size, light weight, lack of conductivity, resistance corrosion, multiplexing ability and immunity to electromagnetic interference. Based on the properties of high-piled wharfs in coastal ports and servicing seawater environment and the benefits of FBG sensors, the SHM system for a high-piled wharf in the Tianjin Port of China is devised and deployed partly using the FBG sensor technique. In addition, the health-monitoring parameters are proposed. The system can monitor the structural mechanical properties and durability, which provides a state-of-the-art mean to monitor the health conditions of the wharf and display the monitored data with the BIM technique. In total, 289 FBG stain sensors, 87 FBG temperature sensors, 20 FBG obliquity sensors, 16 FBG pressure sensors, 8 FBG acceleration sensors and 4 anode ladders are installed in the components of the back platform and front platform. After the installation of some components in the wharf construction site, the good signal that each sensor measures demonstrates the suitability of the sensor setup methods, and it is proper for the full-scale, continuous, autonomous SHM deployment for the high-piled wharf in the costal port. The South 27# Wharf SHM system constitutes the largest deployment of FBG sensors for wharf structures in costal ports to date. This deployment demonstrates the strong potential of FBGSNs to monitor the health of large-scale coastal wharf structures. This study can provide a reference to the long-term health-monitoring system deployment for high-piled wharf structures in coastal ports.